
Intra-Piconet Scheduling

in Bluetooth®

Rachid Ait Yaiz

Promotiecommissie

Voorzitter: prof.dr.ir. W.H.M. Zijm

Promotoren: prof.dr.ir. B.R.H.M. Haverkort

prof.dr.ir. I.G.M.M. Niemegeers

Assistent promotor: dr.ir. G.J. Heijenk

Leden: prof.dr. J.L. van den Berg

prof.dr.ir. J.C. Haartsen

dr.ir. G.J.M. Smit

prof.dr.-ing B. Walke

ISBN 90–365–2049–5
ISSN 1381–3617, CTIT Ph.D.-thesis series no. 04–62

Centre for Telematics and Information Technology,
P.O. Box 217, 7500 AE Enschede, The Netherlands

Copyright ©2004, R. Ait Yaiz, Apeldoorn, The Netherlands

INTRA-PICONET SCHEDULING

IN BLUETOOTH ®

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 8 juli 2004 om 16.45 uur

door

Rachid Ait Yaiz

geboren op 9 maart 1974

te Amsterdam

Dit proefschrift is goedgekeurd door:

prof.dr.ir. B.R.H.M. Haverkort (promotor)
dr.ir. G.J. Heijenk (assistent promotor)
prof.dr.ir. I.G.M.M. Niemegeers (promotor)

Abstract

The trend of dynamically interconnecting the personal devices that people carry with them
has led to the introduction of personal area networks (PANs) and personal networks (PNs).
The Bluetooth® wireless access technology is believed to be a potential enabler of PANs
and PNs. This dissertation focuses on Bluetooth intra-piconet scheduling (also referred to
as Bluetooth polling) that helps in making the Bluetooth technology a successful enabler of
PANs and PNs.

In order for the Bluetooth technology to be such a successful enabler, its polling mechanism
should be efficient. At the same time, the polling mechanism should also be fair. Finally,
the polling mechanism must be able to provide quality of service (QoS), which is needed to
support audio and video applications. Conventional polling mechanisms are less suitable for
Bluetooth as they do not take the Bluetooth specification into account. Current Bluetooth
polling mechanisms are either not able to poll in a fair and efficient manner, or they do not
provide the needed QoS.

In this thesis, a new polling mechanism, named Predictive Fair Poller (PFP), is developed.
This polling mechanism predicts the availability of data for each slave, and it keeps track of
fairness. Based on these two aspects, it decides which slave to poll next such that the effi-
ciency and fairness are optimized.

Further, two new QoS-capable polling mechanisms are developed, namely the fixed-interval
poller and the variable-interval poller. These pollers follow the IETF’s Guaranteed Service
approach, hence providing both a rate guarantee and a delay guarantee. With respect to Blue-
tooth polling, this is new. The fixed-interval poller plans polls to slaves with fixed intervals,
whereas the variable-interval poller postpones polls for slaves, whenever possible, in order to
save bandwidth. The fixed-interval poller and the variable-interval poller provide, with some
predefined maximum deviation, a rate guarantee, which leads to a delay guarantee, provided
that the traffic sources comply to their traffic flow specification. These two types of guaran-
tees are the main QoS types that are needed for audio and video applications. Additionally,
retransmission strategies are developed that minimize the influence of bad radio environments
on the provisioning of these QoS types.

The mechanisms and techniques developed in this work are evaluated by means of simu-
lation studies. These studies show that PFP is fair and efficient. In particular, the studies
show that PFP performs at least as good as and sometimes better than existing Bluetooth
polling mechanisms. Furthermore, the studies show that the variable-interval poller outper-
forms the fixed-interval poller, and that it is able to guarantee delay bounds that approach the
delay bounds that can be guaranteed using a synchronous connection-oriented (SCO) chan-
nel. Moreover, the variable-interval poller is able to do so while consuming less resources.
As the variable-interval poller can also perform retransmissions, this saved bandwidth can be
used to avoid the link quality problems of SCO channels in bad radio environments, while
keeping up QoS.

Acknowledgments

The road to the Ph.D. degree is heavy, long, and lonely, but more important, made bearable
with the support of family, friends, and colleagues. Now that I arrived at this stage, I would
like to thank them for their support.

I would like to start with my supervisors prof.dr.ir. Boudewijn Haverkort and prof.dr.ir. Ig-
nas Niemegeers, and my daily supervisor dr.ir. Geert Heijenk. They helped me in realizing
the dissertation that you are reading now. Besides them, I also thank dr.ir. Victor Nicola,
dr.ir. Erik van Doorn, ir. Martin van der Zee, dr. Phil Chimento, and ir. Pierre Jansen for
the valuable discussions I have had with them. Other colleagues that I would like to thank
include Aiko, Alex, Assed, Bert-Jan, Carel, Djoerd, Enno, Ewout, Fred, Georgios, Hans, He-
len, Hommad, Ing, Jaap, Jan, José, Kees, Lucia, Maarten, Malohat, Marc, Marcos, Maurice,
Michael, Minh, Nikolay, Patrick, Pieter-Tjerk, Richard, Sonia, Val, and Vlora. Many of these
colleagues allowed me to use their computer when I was desperately looking for more pro-
cessing power for my simulation studies. I would also like to thank the people from Ericsson
and WMC that contributed in one way or another to this work. These include Fredrik Alriks-
son, Arie Huijgen, Per Johansson, Ulf Jönsson, Johan Nielsen, Simon Oosthoek, and John de
Waal.

Besides the support that I have received from my colleagues, I have also received a lot of sup-
port from my friends, which I would like to thank here. These friends include AbdelFettah,
AbdelHafid, AbdelMajid, AbdelMonim, AbdelOuahab, Ahmed, Bedir, Hadi, Hamda, Hom-
mad, Mehmet, Mohammed, Mouad, Omar, Osman, Rachid, Said, Salaheddine, Ziad, and all
the members of the UT-Moslems community. This community really gave me the true and
nice feeling that I am not alone.

Last but not least, I would like to thank my family, especially those in the Netherlands and in
Morocco, for their support and caring during this heavy, long, and lonely road. My affection
for them, as well as my gratitude to them cannot be expressed in a thousand words, so I will
simply say: Thank you . . .

Rachid Ait Yaiz
July 8, 2004

Apeldoorn, The Netherlands

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Background .1
1.2 Motivation . 2
1.3 Contributions .3
1.4 Organization of the dissertation .4

2 Preliminaries 5
2.1 The Bluetooth technology .5

2.1.1 Introduction .5
2.1.2 Bluetooth protocol stack .7
2.1.3 Radio Frequency (RF) Layer .8
2.1.4 Baseband .8

2.1.4.1 Baseband Packets .9
2.1.4.2 Error correction .13
2.1.4.3 Bluetooth link controller states14

2.1.5 Link Manager Protocol .14
2.1.6 Logical Link Control and Adaptation Protocol15

2.2 Internet Quality of Service .16
2.2.1 Integrated Services .16

2.2.1.1 Guaranteed Service .16
2.2.1.2 Controlled-Load service19

2.2.2 Differentiated Services .19
2.2.3 Summary .20

3 Scheduling Best Effort Traffic in Bluetooth 21
3.1 Problem Description .21

3.1.1 Introduction .21
3.1.2 Goals for a Poller .21

3.1.2.1 Efficiency .22
3.1.2.2 Total mean response time22
3.1.2.3 Fairness .23

3.2 Related work .26
3.2.1 Cyclic polling .27
3.2.2 Fair Exhaustive Polling .28
3.2.3 Adaptive Cycle-Limited Scheduling28
3.2.4 HOL Priority and HOL K-Fairness Scheduling28
3.2.5 Flow-bit based polling .29

vi CONTENTS

3.2.6 Efficient Double Cycle Scheduling Algorithm29
3.2.7 Demand-based Bluetooth Scheduling30
3.2.8 Sniff-based polling .30
3.2.9 Adaptive Share Polling .31

3.3 Predictive Fair Polling .31
3.3.1 Building blocks of PFP .32
3.3.2 Implementation of PFP for the Best Effort case33

3.3.2.1 Markov chain analysis .35
3.3.2.2 Traffic Demand Estimator39
3.3.2.3 Data Availability Predictor40
3.3.2.4 Fair Share Determinator40
3.3.2.5 Fraction of Fair Share Determinator41
3.3.2.6 Decision Maker .41

3.3.3 Simplification of PFP .42
3.3.4 Extension to PFP for duplex traffic handling42

3.4 Analysis of stability, efficiency, and fairness42
3.4.1 Stability of the 1-limited Round Robin poller44
3.4.2 Efficiency of the 1-limited Round Robin poller47
3.4.3 Fairness of the 1-limited Round Robin poller50

3.5 Simulation studies .53
3.5.1 Description of the Simulation Model54
3.5.2 The Poisson scenario with fixed IP packet sizes54

3.5.2.1 Purpose of the simulation54
3.5.2.2 Description of the simulation scenario55
3.5.2.3 Expectations for the efficiency56
3.5.2.4 Expectations for the fairness58
3.5.2.5 Simulation results .59
3.5.2.6 Conclusions of scenario I62

3.5.3 The Poisson scenario with variable IP packet sizes66
3.5.3.1 Purpose of the simulation66
3.5.3.2 Description of the simulation scenario66
3.5.3.3 Expectations for the efficiency67
3.5.3.4 Expectations for the fairness69
3.5.3.5 Simulation results .70
3.5.3.6 Conclusions of scenario II71

3.5.4 The FTP/TCP scenario .75
3.5.4.1 Purpose of the simulation75
3.5.4.2 Description of the simulation scenario75
3.5.4.3 Expectations for the efficiency76
3.5.4.4 Expectations for the fairness78
3.5.4.5 Simulation results .79
3.5.4.6 Conclusions of scenario III80

3.6 Discussion .83

CONTENTS vii

4 QoS in Bluetooth: an ideal radio environment 85
4.1 Problem description .85

4.1.1 The Guaranteed Service approach85
4.1.2 Problem statement .86
4.1.3 Related work .87

4.2 Design of QoS support for Bluetooth .88
4.2.1 Fixed-interval polling .89

4.2.1.1 Admission Control .89
4.2.1.2 Determining poll period̃pi 91
4.2.1.3 Determining relative deadlinẽdi 91
4.2.1.4 ExportingC andD error terms 98

4.2.2 Variable-interval polling .98
4.2.3 Improvement of the admission control100

4.3 Simulation studies .101
4.3.1 Scenario I:Comparison between the fixed-interval poller and the variable-

interval poller .101
4.3.1.1 Purpose of the simulation101
4.3.1.2 Description of the simulation scenario102

4.3.2 Simulation results .103
4.3.2.1 Conclusions of scenario I104

4.3.3 Scenario II:
Comparison between the variable-interval poller and an SCO channel107
4.3.3.1 Purpose of the simulation107
4.3.3.2 Description of the simulation scenario107
4.3.3.3 Simulation results .108
4.3.3.4 Conclusions of scenario II110

4.4 Discussion .112

5 QoS in Bluetooth: a non-ideal radio environment 113
5.1 Problem description .113
5.2 Determining the flush timeout .114
5.3 Performing retransmission in slack time .115

5.3.1 Related work .116
5.3.2 Slack determination procedure .117
5.3.3 Offline-determined slack usage policy120
5.3.4 Online-determined slack usage policy125
5.3.5 Online-checked slack usage policy128
5.3.6 Hybrid-checked slack usage policy130
5.3.7 Hybrid-determined slack usage policy131

5.4 Simulation studies .132
5.4.1 Description of the Simulation environment132

5.4.1.1 Bluetooth bit error model132
5.4.1.2 Translation of bit errors to packet errors136

5.4.2 Scenario I:
Comparison between the fixed-interval poller and the variable-interval
poller .139
5.4.2.1 Purpose of the simulation139
5.4.2.2 Description of the simulation scenario139

viii CONTENTS

5.4.2.3 Simulation results .139
5.4.2.4 Conclusions of scenario I140

5.4.3 Scenario II: Comparison of the different retransmission policies . . .144
5.4.3.1 Purpose of the simulation144
5.4.3.2 Description of the simulation scenario144
5.4.3.3 Simulation results .144
5.4.3.4 Conclusions of scenario II145

5.4.4 Scenario III:
Comparison of the different retransmission policies for higher num-
ber of flows .153
5.4.4.1 Purpose of the simulation153
5.4.4.2 Description of the simulation scenario153
5.4.4.3 Simulation results .155
5.4.4.4 Conclusions of scenario III155

5.4.5 Scenario IV: Comparison with an SCO channel157
5.4.5.1 Purpose of the simulation157
5.4.5.2 Description of the simulation scenario157
5.4.5.3 Simulation results .157
5.4.5.4 Conclusions of scenario IV158

5.5 Discussion .160

6 Conclusions and further work 161
6.1 Conclusions and results .161
6.2 Directions for further research .163

Bibliography 165

Acronyms 171

Index 175

Samenvatting 177

Chapter 1

Introduction

This dissertation is concerned with Bluetooth intra-piconet scheduling, also referred to as
Bluetooth polling. The dissertation focuses on the development of Bluetooth polling mecha-
nisms which help in making the Bluetooth technology a successful enabler of Personal Area
Networks and Personal Networks.

This chapter introduces the dissertation by providing background information, motivating the
work, presenting the main contributions, and describing the outline of the dissertation.

1.1 Background

The technological advances in electronics and telecommunications of the last few decades
have led to the development of numerous personal devices that we carry with us. These per-
sonal devices are used for, for instance, improving our business, tightening our personal
contacts, health-care, entertainment purposes, and many more. Examples of these devices
are computers, personal digital assistants (PDAs), phones, cameras, medical devices, audio
players, and game consoles.

The trend of dynamically networking these personal devices has led to the introduction of
personal area networks(PANs), which are used to enhance our personal living environment.
The concept of personal area networks is nowadays evolving to the newer concept ofper-
sonal networks(PNs) [NHdG02]. These consist of a core personal area network extended
on-demand with remote personal devices, remote foreign devices, and local foreign devices.
This concept is illustrated in Figure 1.1, where person A is equipped with several devices that
are connected through his PAN. His PAN is also extended with the network in his car, his
network at home, his network at work, and the PAN of person B (e.g., his wife) forming a
so-called personal network.

The concept of personal networks opens the door for new services and application areas not
envisaged before. For instance, imagine a revalidating person equipped with sensors that
monitor functions of his body. A personal network comprising these sensors, his mobile
phone, and the remote health-care center’s equipment will make it possible to keep track of
the revalidation process of the person, without requiring him to stay in the revalidation center.

Another usage scenario of personal networks is the following. Suppose you are in a plane
returning from a business trip. While in the plane, you compose several emails on your lap-
top. As your cellular phone must be turned off during the flight, these emails stay in the
out-box of your email program as you cannot send them. Once leaving the plane, you turn on
your cellular phone, which, after checking your laptop for pending outgoing emails, sends the
emails you composed in the plane. Once you enter your car to drive back home, a friend of
yours phones you through your cellular phone, and a live picture of him appears on a screen
in your car. Meanwhile, your family at home knows that you are almost home as they are

2 Chapter 1. Introduction

exactly aware of your car’s current location. Your car makes its location known through your
mobile phone.

One of the potential enablers of PANs and PNs is the Bluetooth wireless access technol-
ogy [JKKG01]. Bluetooth [BT001][Haa00] is a technology that was initially developed as a
replacement for cables between devices [Haa98]. However, it evolved to a technology that
can be used to simultaneously network multiple devices.

Bluetooth nodes (devices) are either a master or a slave, and communication only takes place
between the master and a slave, and never directly between two slaves or two masters. One
master and up to seven slaves can be affiliated with each other and form a so-called piconet.
On a time-division basis, a Bluetooth node can be a master in one piconet and/or a slave in
one or more other piconets, making it possible to interconnect piconets forming a so-called
scatternet.

PAN Personal Area Network

PN Personal Network

PN of person A

Infrastructure networks

PAN

Person A

PAN

Person B

Home
Network

Corporate
Network

Vehicular
Area Network

Figure 1.1: Personal Network

1.2 Motivation

In a Bluetooth piconet, bandwidth is divided among the slaves using a polling mecha-
nism, which is also referred to as intra-piconet scheduling mechanism. This polling mecha-
nism is applied by the master and is highly determining for the performance of the Bluetooth
connections. In order for the Bluetooth technology to be a successful enabler for personal
(area) networks, at least the following requirements must be met:

• Since the wireless resources are scarce, the bandwidth must be divided in an effi-
cient manner (see Section 3.1.2.1). For instance, if a personal area network includes
a Bluetooth-enabled computer and a Bluetooth printer, while no document is being
printed, it is a waste of wireless resources to keep polling the printer.

• The bandwidth should be divided in a fair manner (see Section 3.1.2.3). For instance,
if a personal area network includes a Bluetooth-enabled computer, a Bluetooth mouse,

1.3. Contributions 3

and a Bluetooth printer, it would be efficient to poll only the printer. However, the
computer will then not react to moving the mouse.

• The polling mechanism must be suitable for providing quality of service (QoS) (see
Section 4.1.2). For instance, if a personal area network includes a Bluetooth-enabled
computer, Bluetooth speakers, and a Bluetooth Internet access point, the audio you are
listening to should not be disturbed by an Internet download session that you initiate.

• The QoS to be provided by the polling mechanism should be minimally influenced
by non-ideal radio environments (see Section 5.1). For instance, if a personal area
network includes a Bluetooth-enabled mobile phone and a Bluetooth headset, a phone
conversation should be performed as good as possible in the presence of interference.

Conventional polling mechanisms (e.g. [Tak86, BLW91, Box91], and [BR87]) are less suit-
able for Bluetooth because of several reasons. Most important, they cannot be properly
mapped on the Bluetooth system, where polling an empty queue results in a wasted time
slot, where master-to-slave queues and slave-to-master queues are coupled, and where there
is no knowledge about the availability of data at a slave.

A simple polling mechanism that can be used in Bluetooth is the 1-limited Round Robin
poller. Using this polling mechanism, the slaves in a Bluetooth piconet are granted transmis-
sion time in a cyclic manner, independent of the need for transmission time. This polling
mechanism is unable to fulfill the aforementioned requirements.

Advanced polling mechanisms have been defined (e.g., [JKJ99]) to (partly) fulfill the first
two requirements, i.e., to be efficient, and to be fair. However, these polling mechanisms are
unable to provide QoS. The Bluetooth standard defines a so-called SCO channel (see Chap-
ter 2) in which slaves in a Bluetooth piconet are polled with fixed predefined intervals. This
SCO channel can be used to provide QoS to some types of traffic flows (e.g., CBR traffic). In
SCO channels, no retransmissions are performed, which make them vulnerable to bad radio
environments. At the cost of lower bandwidth, SCO provides strong forward error correction
schemes to cope with bad radio environments. Related work will be presented in the corre-
sponding chapters.

The main goal of this thesis is the design of new Bluetooth polling mechanisms. First, we aim
to design a polling mechanism that, in case of best effort traffic, divides bandwidth among
the slaves in a fair and efficient manner. Second, we aim to design a polling mechanism that
is able to provide quality of service. These polling mechanisms help in making the Bluetooth
technology a successful enabler of personal area networks, and thus of personal networks.

1.3 Contributions

This dissertation provides a number of contributions, which are described in the follow-
ing:

• Efficient and fair scheduling of best effort traffic in Bluetooth
A new polling mechanism, named Predictive Fair Poller, has been designed that is able
to divide, in an efficient and fair manner, bandwidth among the slaves in a Bluetooth

4 Chapter 1. Introduction

piconet. This polling mechanism keeps track of the fairness and the probability of data
being available. Based on these aspects it decides which slave to poll next.

• Scheduling QoS traffic in Bluetooth
Two polling mechanisms have been designed that are able to provide both delay guar-
antees and rate guarantees. These types of QoS support are necessary for, among oth-
ers, audio and video applications in a Bluetooth piconet. The first polling mechanism
plans polls for slaves with fixed intervals, whereas the second polling mechanism plans
polls for slaves with variable intervals, as it postpones polls, whenever possible, in
order to save as much as possible bandwidth. Furthermore, each planned poll has a
deadline that must be met, i.e., a deadline before which the poll must be executed. The
bandwidth saved by the second polling mechanism can be used to achieve a higher best
effort throughput, or for performing retransmissions of lost packets.

• Scheduling QoS traffic in Bluetooth in a non-ideal radio environment
Mechanisms and techniques have been defined to minimize the effect of bad radio
environments on the QoS scheduling in Bluetooth. They are based on performing
retransmissions of lost packets as soon as possible, without causing the aforementioned
poll deadlines to be missed.

1.4 Organization of the dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2presents background information about the Bluetooth technology and about
Internet quality of service. Readers familiar with these concepts may skip this chapter.

• Chapter 3discusses the development of a polling mechanism that is able to divide, in
an efficient and fair manner, bandwidth among the slaves in a Bluetooth piconet. For
comparison, the stability, efficiency, and fairness of the 1-limited Round Robin poller
are studied with analytical means. By means of simulation, the developed polling
mechanism is evaluated and compared with some of the existing solutions.

• Chapter 4discusses the development of two polling mechanisms that are able to pro-
vide rate and delay guarantees. By means of simulations, these polling mechanisms
are evaluated and compared with existing Bluetooth solutions to providing QoS.

• Chapter 5discusses the development of mechanisms that minimize the effect of bad
radio environments on the polling mechanisms introduced in Chapter 4. By means
of simulations, the resulting polling mechanisms are evaluated and compared with the
existing Bluetooth solutions to providing QoS in a bad radio environment.

• Chapter 6concludes this dissertation by summarizing the achievements presented in
this dissertation. Furthermore, it presents directions for further research.

Chapter 2

Preliminaries

This chapter presents background information on the Bluetooth technology and on Internet
QoS, while focusing on parts relevant to this dissertation. The background information pre-
sented in this chapter is mainly extracted from [Haa98], [Haa00], and [BT001] in case of the
Bluetooth technology, and from [XN99] and [SSG97] in case of Internet QoS. This chap-
ter is organized as follows. Section 2.1 describes the Bluetooth technology, focusing on the
baseband layer and the so-called L2CAP layer. Section 2.2 describes the Internet Engineer-
ing Task Force’s (IETF) way of providing Integrated Services and Differentiated Services,
focusing on the Guaranteed Service approach of providing Integrated Services.

2.1 The Bluetooth technology

2.1.1 Introduction

As the number of personal devices and their accessories persons carry with them grew,
the number of accompanying cables and connectors also grew. Simultaneously, the need for a
way to get rid of these cables and connectors emerged. Although many personal devices can
use infrared links (IrDA) for wireless communications, the use of IrDA has some inherent
disadvantages. Infrared links have a very limited range, require a line-of-sight, and do not
support simultaneous connections between more than two devices.

In 1994, Ericsson Mobile Communication AB started a study to investigate the feasibility of
a low-power, low-cost radio interface between mobile phones and accessories [Haa98]. In-
herent to radio links, this radio interface would not have the disadvantages of infrared links.
The study ultimately resulted in a widely supported new wireless access mechanism named
Bluetooth.

Bluetooth is a wireless access technology that operates in the 2.4 GHz ISM (Industrial Scien-
tific Medical) band. Bluetooth nodes are either a master or a slave, and communication only
takes place between a master and a slave, and never directly between two slaves or two mas-
ters. One master and up to seven slaves can be affiliated with each other and form a so-called
piconet. On a time-division basis, a Bluetooth node can be a master in one piconet and/or
a slave in one or more other piconets, making it possible to interconnect piconets forming
a so-called scatternet. Figure 2.1 shows an example of three piconets forming a scatternet.
In Figure 2.1, node n1, node n9, and node n14 are the masters of piconet A, piconet B, and
piconet C, respectively. On a time-division basis, node n5 is a slave in both piconet A and
piconet C, and node n9 is the master of piconet B and a slave in piconet C. This makes it
possible for all the nodes in piconet A, piconet B, and piconet C to communicate with each
other. For instance, node n3 can communicate with node n12 through node n1, node n5, node
n9, and node n14.

Figure 2.2 shows a usage scenario of Bluetooth. More specifically, it shows a Personal Area

6 Chapter 2. Preliminaries

Slave

Master

Master/Slave

Slave/Slave

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n1

piconet A

scatternet

piconet B

piconet C

Figure 2.1: Three piconets forming a scatternet

Network that is created using a single piconet. This piconet is connected to an infrastructure
network through the master, which serves here as an accesspoint to the infrastructure network.
For instance, the accesspoint is a Bluetooth-enabled UMTS phone, which provides a wireless
connection to an infrastructure network. The setup allows its user, for instance, to browse
the Internet on the laptop and the PDA, to have a phone conversation through the headset,
to play a game against a remote opponent, to inform a friend about his exact location, and
to let the revalidation center keep track of his revalidation process. In this dissertation, we
focus on scheduling in a single piconet, possibly connected to an infrastructure, as illustrated
in Figure 2.2.

Infrastructure network (e.g., UMTS)

Slave

Master

PDA

Laptop

Headset

Gaming
device

Accesspoint
(e.g., UMTS phone)

Medical
sensor

GPS
device

Personal Area Network

Figure 2.2: Example of a Personal Area Network that consists of a single piconet connected to an
infrastructure network.

2.1. The Bluetooth technology 7

2.1.2 Bluetooth protocol stack

The protocol stack of Bluetooth is shown in Figure 2.3. The radio frequency (RF) layer
is concerned with the actual transmission of data over the air interface. The baseband layer
carries out the low-level link routines. Furthermore, it is concerned with low-level operations
such as encryption, error coding, and retransmission schemes. The link manager (LM) layer
is responsible for setup and management of baseband connections. It attaches and detaches
slaves, it establishes so-called SCO links, and it handles the low power modes hold, sniff, and
park. The logical link control and adaptation protocol (L2CAP) layer provides data services
to higher-layer protocols. It is concerned with higher-level protocol multiplexing, packet
segmentation and reassembly (SAR), and the exchange of quality of service (QoS) informa-
tion. The L2CAP layer interfaces with various other protocol layers such as the so-called
RFCOMM layer, the transmission convergence sublayer (TCS), the Service Discovery Pro-
tocol (SDP) layer, and other protocol layers, including the Internet Protocol (IP) layer. The
RFCOMM protocol is used for serial port emulation on top L2CAP, which provides a packet-
oriented channel. TCS provides a cordless telephony protocol. SDP is used to discover the
services that are available as well as to determine the characteristics of these services. Fi-
nally, IP is used for connecting, for instance, personal digital assistants (PDAs) and laptops
to the Internet. Note that Audio is transported using so-called SCO voice channels, which
are defined in the baseband layer. However, packetized audio data, e.g. IP telephony, may be
transported using L2CAP channels.

The following sections describe, in more detail, the protocol layers relevant to this disserta-
tion.

Applications

others SDP TCS

L2CAP

Link Manager

Baseband

RFCOMM

RF

Data

A
u
d
io

C
on

tr
ol

Figure 2.3: Bluetooth protocol stack [Haa00]

8 Chapter 2. Preliminaries

2.1.3 Radio Frequency (RF) Layer

Bluetooth operates in the 2.4 GHz ISM (Industrial Scientific Medical) band. In most
countries around the world the range of this frequency band is 2400 - 2483.5 MHz. In some
countries a limited frequency range is used due to national limitations. For instance, the fre-
quency range in France is 2446.5 - 2483.5 MHz. The radio uses frequency hopping to spread
the energy across the ISM band in 79 (23 in France) RF channels of 1 MHz.

Bluetooth uses Gaussian Frequency Shift Keying (GFSK) with a modulation index between
0.28 and 0.35. A logical one is represented by a positive frequency deviation, and a logical
zero is represented by a negative frequency deviation. The Bluetooth symbol rate is 1 Ms/s,
which results in a raw bit rate of 1 Mbps.

2.1.4 Baseband

As mentioned before, Bluetooth nodes are either a master or a slave, and communication
only takes place between the master and a slave, and never directly between two slaves or
two masters. One master and up to seven slaves can be affiliated with each other and form
a so-called piconet. On a time division basis, a Bluetooth node can be a master in one pi-
conet and/or a slave in one or more other piconets, making it possible to interconnect piconets
forming a so-called scatternet (see Figure 2.1).

The Bluetooth channel is represented by a pseudo-random1 hopping sequence that hops
through 79 (or 23) RF frequencies at a nominal hop rate of 1600 hops/s. The hopping se-
quence in a piconet is determined based on the Bluetooth device address and clock of the
master of that piconet, while the participants in the piconet are time- and hop-synchronized
to the channel. As the Bluetooth device address and clock of the master determine the hop-
ping sequence, a Bluetooth node can be master in only one piconet.

The channel is divided into 1600 time slots per second. Time slots are either downlink slots,
i.e., from the master to a slave, or uplink slots, i.e., from the addressed slave to the master.
Data is exchanged between the master and a slave using baseband packets that cover one,
three or five time slots, while the whole baseband packet is transmitted using the RF hop
frequency of its first slot.

Bluetooth supports two types of links between a master and a slave: aSynchronous Connection-
Oriented (SCO)link and anAsynchronous Connection-Less (ACL)link. Baseband packets
sent over an SCO link (SCO packets) always cover one time slot while baseband packets sent
over an ACL link can cover one, three, or five time slots. In case of an SCO link between the
master and a slave, the master polls that slave at regular intervals. The addressed slave can
then respond with an SCO packet. In case of an ACL link, polling can be done in many differ-
ent ways. The difference between the polling mechanisms is related to the order which slaves
are polled in and to the service discipline used to serve a slave. Figure 2.4 shows an example
of polling slaves, in the absence of SCO channels, in a 1-limited Round Robin manner. The
master implicitly polls the slaves by sending data to them. In case the master has no data for

1A pseudo-random sequence of numbers is a sequence of numbers that appears to be random, but which is
determined by a random number generator.

2.1. The Bluetooth technology 9

the slave to be polled, the master explicitly polls that slave by sending a POLL packet, which
is a packet with no payload. When polled, a slave responds with a single packet. In case the
polled slave has no data to be transmitted, it responds with a NULL packet, which is a packet
with no payload.

N

P

P

N

N

P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Data packet

Master

Slave 1

Slave 2

Slave 3

Slave 4

Slave 5

Slave 6

Slave 7

POLL packet

NULL packet

time slot number

Figure 2.4: Polling in Bluetooth

2.1.4.1 Baseband Packets

The general Baseband packet format is shown in Figure 2.5. Generally, a baseband packet
consists of an access code, a header, and a payload field. The size of the access code is 72
bits if a packet header follows and 68 bits otherwise. The access code identifies all baseband
packets exchanged on the channel of the piconet. The size of the baseband packet header is
54 bits, and the size of the payload ranges between 0 and 2745 bits.

Access code Header

LSB 72 54 0-2745 MSB

Payload

Figure 2.5: General packet format [BT001]

Three types of access codes are defined in the standard and are used in different operating
modes: the Channel Access Code (CAC), the Device Access Code (DAC) and the Inquiry
Access Code (IAC). The CAC is included in all packets exchanged on the piconet channel

10 Chapter 2. Preliminaries

and identifies the piconet. The DAC is used for, among others, paging and response to pag-
ing. Finally, two variations of the IAC are defined: General Inquiry Access Code (GIAC)
and Dedicated Inquiry Access Code (DIAC). The GIAC can be used to discover which other
Bluetooth nodes are in range, whereas the DIAC can be used for the same purpose, though
being restricted to a dedicated group of Bluetooth nodes that share a common characteristic.
As opposed to the CAC, the DAC and IAC do not always include a header. In that case the
size of the DAC and IAC is 68 bits.

As can be seen in Figure 2.6, the access code consists of a preamble, a sync word, and a
trailer. The preamble is a fixed zero-one pattern and is used for DC compensation. The se-
quence is 1010 if the first bit of the syncword is one, and is 0101 otherwise. The sync word
for the CAC is a 64-bit code word that is derived from the 24-bit lower address part (LAP) of
the unique 48-bit Bluetooth device address (BDADDR) of the master. Reserved dedicated
LAPs are used for the sync word for the GIAC and the DIAC, while the slave’s LAP is used
for the sync word of the DAC. Similar to the preamble, the trailer is a fixed zero-one pattern
that is 1010 if the last bit of the sync word is zero and is 0101 otherwise. Note that the trailer
is only appended if a packet header follows the access code.

Preamble

LSB 4 64

TrailerSync word

4 MSB

Figure 2.6: Access code format [BT001]

AM_ADDR

LSB 3 1

HEC

8 MSB

TYPE FLOW ARQN SEQN

114

Figure 2.7: Header format [BT001]

The packet header consists of 18 information bits and is 1/3 FEC encoded2, which results in
a 54 bits header. The header (before FEC encoding) is shown in Figure 2.7 and consists of:

• a 3-bit active member address (AMADDR), which is assigned to each slave that be-
comes member of a piconet. Packets exchanged between the master and a particular
slave include the active member address of that slave. As soon as a slave is discon-
nected or parked (see Section 2.1.4.3) it gives up its assigned active member address.
Broadcasting packets and so-called FHS packets include an all-zero active member
address.

• 4-bit type code (TYPE), which identifies the baseband packet type. Its interpretation
depends on the physical link type (ACL or SCO). Note that the packet type also deter-
mines the number of slots covered by the packet.

• 1-bit flow control (FLOW), which is used for flow control of packets over the ACL
link.

2The rate 1/3 FEC code is a simple 3-times repetition FEC, whereas the rate 2/3 FEC is a (15,10) shortened
Hamming code.

2.1. The Bluetooth technology 11

• 1-bit acknowledgment indication (ARQN), which is used to acknowledge the correct
receipt of payload data with cyclic redundancy check (CRC).

• 1-bit sequence number (SEQN), which is used to filter out retransmissions.

• 8-bit header error check (HEC), which is used to check the integrity of the header.

Three groups of packet types can be distinguished. A group of common packet types that are
common to ACL links and SCO links, a group of packet types for ACL links and a group of
packet types for SCO links.

Five packet types are common to ACL links and SCO links and are:

• ID packet, which consists of the DAC or the IAC and which is used in paging and
inquiry procedures.

• NULL packet, which is a packet consisting of only the CAC and a packet header and
which is used to return acknowledgment and flow control information in the absence
of data to be transmitted.

• POLL packet, which is similar to the NULL packet, except that the POLL packet is not
part of the ARQ scheme and that it does not affect the ARQN and the SEQN fields.
The POLL packet must be confirmed by the recipient by responding with a packet even
if no data is available.

• FHS packet, which is a control packet that is, among others, used for making known
the Bluetooth device address and the clock of the sender.

• DM1 packet, which is used to support link messages in both an ACL link and an SCO
link. Its details will be presented when discussing the ACL packet types.

Seven packet types are defined for use in an ACL link and are:

• DM1, DM3 and DM5, which are the Data - Medium rate packets. DM1 may cover
up to one slot, DM3 may cover up to three slots, and DM5 may cover up to 5 slots.
Besides a 16-bit CRC code, the payload contains up to 18 information bytes, 123 in-
formation bytes, and 226 information bytes for DM1, DM3, and DM5 respectively. In
the information bytes, DM1 includes a 1-byte payload header, whereas DM3 and DM5
include a 2-byte payload header. The information bytes plus CRC code are coded with
a rate 2/3 FEC, which adds five parity bits to each 10-bit segment.

• DH1, DH3 and DH5, which are the Data - High rate packets. DH1 may cover up to one
slot, DH3 may cover up to three slots, and DH5 may cover up to 5 slots. Besides a 16-
bit CRC code, the payload contains up to 28 information bytes, 185 information bytes,
and 341 information bytes for DH1, DH3, and DH5 respectively. In the information
bytes, DH1 includes a 1-byte payload header, whereas DH3 and DH5 include a 2-byte
payload header. The information bytes are not FEC encoded.

• AUX1 packet, which is similar to the DH1 packet, except that is does not contain a
CRC code. Consequently it can contain up to 30 information bytes, while a 1-byte
payload header is included in the information bytes.

12 Chapter 2. Preliminaries

Note that the maximum payload size of a baseband packet is not linearly proportional to the
number of slots covered by that baseband packet. Hence, for the same group of ACL packet
types (DH or DM), the larger the baseband packet, the higher the net number of bytes per slot.
Furthermore, DM packets protect the payload with a FEC at the cost of a lower maximum
payload size. Consequently, a slot rate cannot directly be translated into a bit rate.

Four packet types are defined for use in an SCO link and are:

• HV1 (High-quality Voice) packet, which carries 10 information bytes that are encoded
with a rate 1/3 FEC. The HV1 packet contains no payload header and no CRC and is
never retransmitted.

• HV2 packet, which carries 20 information bytes that are encoded with a rate 2/3 FEC.
The HV2 packet contains no payload header and no CRC and is never retransmitted.

• HV3 packet, which carries 30 information bytes that are not protected by FEC. The
HV3 packet contains no payload header and no CRC and is never retransmitted.

• DV (Data Voice) packet, which is a packet that is divided into a 80-bit (10-byte) voice
field and a 150-bit data field. The voice field is not protected by FEC, while the data
field is coded by a rate 2/3 FEC. As opposed to the voice field, the data field is retrans-
mitted if needed.

The packets described above contain a voice field and/or a data field. As opposed to voice
fields, which contain no payload header and no CRC, the data fields consist of a payload
header, a payload body, and a CRC code (not for AUX1). The payload header format of a
single-slot packet is shown in Figure 2.8, whereas the payload header format of a multi-slot
packet is shown in Figure 2.9. As can be seen, the payload header consists of a LCH field,
a FLOW field, and a LENGTH field. The LCH field specifies the logical channel, i.e., it
specifies whether the current baseband packet is the first fragment of an L2CAP message,
a continuation fragment of an L2CAP message, or a so-called LMP message (see also Sec-
tion 2.1.5). The FLOW field controls the flow on the logical channels. Finally, the LENGTH
field indicates the length of the payload.

L_CH

LSB 2 1 5 MSB

FLOW LENGTH

Figure 2.8: Payload Header format of a single-slot packet [BT001]

L_CH

LSB 2 1 9 MSB

FLOW LENGTH Undefined

4

Figure 2.9: Payload Header format of a multi-slot packet [BT001]

The ACL and SCO packet types are summarized in Table 2.1 and Table 2.2, respectively.
The tables shows, for each packet type, the size of payload headers (if any), the user payload
size, the forward error correction type, whether a CRC is included or not, and the maximum

2.1. The Bluetooth technology 13

rate that can be achieved using that packet type. The symmetric maximum rate is achieved
when the same packet type is always used in the opposite direction, whereas the asymmetric
maximum rate is achieved when a single slot packet is always used in the opposite direction.
For instance, in case of a DH5 packet, at most1600

5+5 DH5 packets can be transmitted in one
direction in the symmetric case, which corresponds to a maximum rate of 433.9 kbps. In
the asymmetric case, at most1600

5+1 DH5 packets can be transmitted, which corresponds to a
maximum bit rate of 723.2 kbps.

Payload User Symmetric Asymmetric
header payload maximum rate maximum rate

Type (bytes) (bytes) FEC CRC (kbps) (kbps)

DM1 1 0-17 2/3 yes 108.8 108.8
DH1 1 0-27 no yes 172.8 172.8
DM3 2 0-121 2/3 yes 258.1 387.2
DH3 2 0-183 no yes 390.4 585.6
DM5 2 0-224 2/3 yes 286.7 477.8
DH5 2 0-339 no yes 433.9 723.2

AUX1 1 0-29 no no 185.6 185.6

Table 2.1: Overview of ACL packet types [BT001]

Payload User Symmetric
header payload maximum rate

Type (bytes) (bytes) FEC CRC (kbps)

HV1 na 10 1/3 no 64.0
HV2 na 20 2/3 no 64.0
HV3 na 30 no no 64.0
DV 1 D 10+(0-9)D 2/3 D yes D 64.0 + 57.6 D

Table 2.2: Overview of SCO packet types. Items followed by a ’D’ relate to the data field [BT001]

2.1.4.2 Error correction

Besides the possibility of using a FEC for protection of information bits, an ARQ scheme
is defined for the data. This ARQ scheme makes it possible to retransmit baseband packets
that are not correctly received. The size of the ARQ field is 1-bit, which implies that there can
be at most one outstanding unacknowledged packet per connection. Sometimes, higher-layer
packets have a predefined lifetime, i.e., a time period outside which these packets become
useless for the receiver. Consequently, it is a waste of bandwidth if fragments of these pack-
ets keep being retransmitted. In order to limit the time in which fragments of an L2CAP
packet can be retransmitted, the possibility of flushing payload has been introduced. After a
predefined flush timeout3 Tflush, remaining segments of the L2CAP message being transmit-

3In this dissertation, it is assumed that the the flush timeout of an L2CAP packet is counted from the moment
when the corresponding higher-layer packet arrives at the L2CAP layer

14 Chapter 2. Preliminaries

ted are flushed, and a subsequent L2CAP message (if any) becomes available for transmis-
sion. In Chapter 5, we make use of the flush timeout for providing QoS in a non-ideal radio
environment.

2.1.4.3 Bluetooth link controller states

The Bluetooth link controller, which carries out the baseband protocol and other low-
level link routines is in one of the following states:standby, inquiry, inquiry scan, page, page
scan, or connection.

Thestandbystate is the default state, in which the Bluetooth node is in a low-power mode.
The standby can be left for performing inquiry or paging, or for scanning for inquiry or pag-
ing messages. In thepage scanstate, a slave listens to pages from masters that are in thepage
state and that try to activate and connect to a slave using its device access code (DAC). The
DAC can be obtained through inquiry. Theinquiry andinquiry scanstates are similar to the
pageandpage scanstate respectively, except that instead of a device access code (DAC) in-
quiry messages include the general inquiry access code (GIAC) or a dedicated inquiry access
code (DIAC). Including the GIAC makes it possible to discover any Bluetooth device that is
within range, while including the DIAC makes it possible to discover Bluetooth devices of a
certain type that are within range.

After successful connection, the Bluetooth node resides in theconnection state, in which four
modes can be distinguished, namelyactivemode, and three low power modes:sniff mode,
hold mode, andpark mode. In theactivemode, a Bluetooth node actively participates on the
channel, i.e., masters poll slaves, and slaves reply if polled. Thesniff mode is a mode in which
the master can only start transmission to a slave in specified and regularly spaced time slots.
For instance, this makes it possible for a Bluetooth node to participate in multiple piconets,
forming a so-called scatternet. During thehold mode, the ACL link between the master and
a slave can be put on hold, while SCO links, if any, will still be supported. Finally, thepark
mode can be entered by a slave if participation on the channel is temporarily not needed. In
that case, the slave to be parked gives up its active member address (AMADDR) and gets a
parked member address (PMADDR) and access request address (ARADDR) instead. The
PM ADDR is used in case the master wants to unpark the slave, whereas the ARADDR is
used by the slave when it requests to be unparked.

2.1.5 Link Manager Protocol

The Link Manager Protocol (LMP) is concerned with setup and management of baseband
connections. It is for instance responsible for attaching and detaching slaves, for establishing
SCO links, and for handling of the low power modes hold, sniff, and park.

With respect to link configuration, the LMP provides the capability of guaranteeing a poll in-
tervalTpoll, which is the maximum time between subsequent transmissions from the master
to a slave on the ACL link. Furthermore, the baseband packet types to use are also negotiated
and controlled by the LMP.

2.1. The Bluetooth technology 15

2.1.6 Logical Link Control and Adaptation Protocol

The Logical Link Control and Adaptation Protocol (L2CAP) provides data services to
higher-layer protocols. It is concerned with higher-level protocol multiplexing, packet seg-
mentation and reassembly (SAR), and the exchange of quality of service (QoS) information.

As baseband packets are of a relatively low maximum size, segmentation and reassembly
capabilities are needed in order to transport higher-layer packets larger than the maximum
baseband packet size. Considering the case in which L2CAP runs directly over the baseband
protocol, a higher-layer packet is transported by an L2CAP packet, which is segmented into
possibly multiple baseband packets. Each baseband packet carries an indication whether it is
a first segment or a continuation segment, while the first segments also carries an indication
of the length of the L2CAP packet. Once the baseband at the receiving side receives all seg-
ments belonging to an L2CAP packet, these baseband packets are reassembled at the L2CAP
layer.

L2CAP channels between L2CAP entities in remote devices are either connection-oriented
or connectionless. In both cases, L2CAP packets consist of a 2-byte length indicator field, a
2-byte channel ID (CID) field, up to 65533 bytes of information in case of a connectionless
channel, and up to 65535 bytes of information in case of connection-oriented channel. In
case of a connectionless channel, a Protocol/Service Multiplexer (PSM) field exists between
the channel ID field and the information bytes. The PSM field values 0x0001, 0x0003, and
0x0005 correspond to Service Discovery Protocol, RFCOMM, and Telephony Control Pro-
tocol, respectively.

Signaling commands passed between L2CAP entities on remote devices use a CID value of
0x0001. Through this signaling connection requests, configuration requests, disconnection
requests, echo requests, information requests, and their responses can be exchanged. The
connection request and connection response are used to create an L2CAP channel between
two devices. This channel can be terminated using the disconnection request and discon-
nection response. Echo requests and echo responses are used to test the link or to exchange
vendor-specific information. The information request and information response is used to
exchange implementation-specific information.

The configuration requests and configuration responses are used to establish an initial logical
link transmission contract between two L2CAP entities. Furthermore, they are used to rene-
gotiate such a contract whenever needed. The configuration parameter options that can be
exchanged include the maximum transfer unit (MTU) option, the flush timeout option, and
the quality of service (QoS) option.

The MTU option specifies the maximum L2CAP payload the configuration requester can ac-
cept for that channel. The flush timeout option specifies the amount of time the configuration
requester will try to successfully transmit an L2CAP segment before flushing the L2CAP
packet. The quality of service option is used to specify a flow specification similar the one
proposed in [Par92], and which includes a token bucket specification [Par93]. This option

16 Chapter 2. Preliminaries

makes it possible to specify whether a best effort service or a guaranteed service is needed.
However, L2CAP implementations are not required to provide guaranteed service.

2.2 Internet Quality of Service

Traditionally, the Internet provides aBest Effort (BE)type of service, which means that
the service in terms of, for instance, bandwidth, packet delay, and packet drop probabilities
will be as good as possible. As real-time applications such as IP telephony and audio/video
streaming became increasingly available, the need to provide a service better than best effort
grew. This is especially the case in networks where bandwidth is scarce, e.g., in wireless
networks.

The Internet Engineering Task Force (IETF) has proposed two service architectures for meet-
ing this demand, namely the Integrated Services [BCS94] architecture and the Differentiated
Services [BBC+98] architecture.

2.2.1 Integrated Services

The Integrated Services model is based on per flow resource reservations. Before starting
the actual data transmission, a communication path is set up between the sender and the
receiver of the data flow which QoS is needed for. The IETF has proposed two service classes
for the Integrated Services model, i.e., Guaranteed Service (GS) [SSG97] and Controlled-
Load (CL) [Wro97]. This section briefly describes these service classes.

2.2.1.1 Guaranteed Service

The Guaranteed Service class (GS) [SSG97] makes use of the concept that packet delay
in a network is a function of the arrival pattern of packets, the packet sizes, and the way these
packets are served throughout the network. Guaranteed Service is based on the idea that if a
GS flow is described (by the GS sender) using a token bucket [Par92][Par93] flow specifica-
tion, and if the intermediate network between the GS sender and the GS receiver conforms
thefluid modelat service rateR (see Figure 2.10 for an illustration), then an end-to-end fluid
model delay bounddB

fm can be computed.

The token bucket traffic specification consists of minimum policed unitm, maximum transfer
unit M , token ratert, peak raterp, and bucket sizeb, whereM , m, andb are specified in
bytes, and wherert andrp are specified in bytes/sec. When testing conformance to the traffic
specification, all packets with a size lower than the minimum policed unitm will be counted
as being of sizem. Consequently, traffic sources are encouraged to use packet sizes at least
equal to the minimum policed unit. The maximum transfer unitM is the allowed maximum
size of a packet.

The token bucket traffic specification specifies an envelope of the traffic source. Tokens are
generated with ratert, and up to a maximum ofb tokens can be stored in the token bucket.

2.2. Internet Quality of Service 17

r
p

R

r
t

b

Intermediate network
(GS path)

GS data

GS sender
(traffic source)

GS receivernode 1 node 2 node 3

Figure 2.10: Guaranteed Service model

time

(i
n

 b
y
te

s
)

d
B

fm

slope r
t

slope R
slope r

p

M

b

0
0

traffic envelope

service envelope

Figure 2.11: Delay bound calculation for rt ≤ R < rp

If the bucket is full, newly generated tokens are lost. As long as there are tokens in the
token bucket, data can be transmitted at peak rate4 rp, while removing one stored token for
each transmitted byte. Figure 2.11 and Figure 2.12 show the traffic envelope and the service
envelope in case ofrt ≤ R < rp andrt ≤ rp ≤ R, respectively (see also [GGPR96]).
The traffic envelope is characterized by the token bucket specification, and with the service
envelope we refer to the maximum amount of service that can been provided by a dedicated

4According to [Par92], the peak rate can be seen as a form of a leaky bucket. When a packet of sizeL is sent,
an amount ofL credits are placed into an empty bucket, which drains credits at the peak rate. Furthermore, packets
may only be sent if the bucket is empty.

18 Chapter 2. Preliminaries

time

(i
n

 b
y
te

s
)

d
B

fm

slope r
t

slope R

slope r
p

M

b

0
0

traffic envelope

service envelope

Figure 2.12: Delay bound calculation for rt ≤ rp ≤ R

wire at service rateR. From these figures, it follows that the end-to-end fluid model delay
bound is given by

dB
fm =


b−M

R
rp−R
rp−rt + M

R , rt ≤ R < rp,

M
R , rt ≤ rp ≤ R.

(2.1)

The Guaranteed Service architecture allows the intermediate network to deviate from the fluid
model within a priori agreed-upon bounds. For this, during the Guaranteed Service setup,
each of the intermediate nodes exports its deviation from the fluid model service rateR in
terms of an additional delay. This deviation is expressed in both a rate-dependent deviation,
known as theC error term, and a rate-independent deviation, known as theD error term.
Given a requested service rateR, the end-to-end delay bound is then given by

dB =


b−M

R
rp−R
rp−rt + M+Ctot

R + Dtot, rt ≤ R < rp,

M+Ctot
R + Dtot, rt ≤ rp ≤ R.

(2.2)

whereCtot =
∑

i Ci andDtot =
∑

i Di are, respectively, the rate-dependent deviation and
the rate-independent deviation summed over the intermediate nodes between the GS sender
and the GS receiver.

Guaranteed Service is set up as follows. The Guaranteed Service traffic source (GS source)
sends a token bucket specification of its traffic together with a requested delay bound to the
receiver of the traffic (GS receiver). The intermediate nodes between the GS sender and the
GS receiver compute their deviation from the fluid model and export this information to the
receiver of the GS flow. Using the token bucket traffic specification, the exported deviations,

2.2. Internet Quality of Service 19

and the requested delay bound, the requested service rateR that leads to the requested delay
bounddB is computed (for instance, by the receiver of the GS flow). Finally, the computed
service rateR is requested (for instance, by the receiver) from the intermediate nodes be-
tween the GS sender and GS receiver.

The exchange of the aforementioned traffic specification, exported error terms, and requested
service rate can be done using theresource reservation protocol(RSVP) [BZB+97]. With
RSVP, a so-called Path message, containing the traffic specification and the delay request, is
sent from the GS sender to the GS receiver, while the intermediate nodes add theirC and
D error terms to this message. Once the Path message arrives at the GS receiver, the GS
receiver sends a so-called Resv message back to the GS sender. The Resv message contains
the requested serviceR and is used to request this service rate from the intermediate nodes.
Note, that the use of RSVP is not required by the Guaranteed Service architecture, which is
independent of the former.

2.2.1.2 Controlled-Load service

The Controlled-Load (CL) [Wro97] service class is concerned with providing applica-
tions a behavior that approximates the behavior these applications would experience under
lightly loaded network conditions, i.e., low packet drop ratio and low delay. For this, the
Controlled-Load service requesting applications specify their traffic using a token bucket
flow specification [Par92]. If the network elements in the CL service path accept the flow
from the CL service requesting application, they commit to provide this flow a behavior that
approximates the best effort behavior in the same CL service path under lightly loaded net-
work conditions. As opposed to the GS class, the CL service class provides a relative QoS
rather than an absolute QoS.

2.2.2 Differentiated Services

With Integrated Services, the amount of state information at the Integrated Services sup-
porting network elements is proportional to the number of flows for which Integrated Ser-
vices is provided. Furthermore, a complicated classification of all the data traffic must be
performed. Consequently, Integrated Services does not scale well in networks with large
numbers of flows, such as the Internet core. Therefore, the IETF introduced the Differenti-
ated Services [BBC+98] (DS) architecture, which achieves better scalability by maintaining
state information for aggregates of flows rather than for individual flows.

With Differentiated Services, customers have a Service Level Agreement (SLA) with their
Internet Service Provider (ISP). The SLA specifies the supported service classes and the
amount of traffic allowed for that service class. The DS field [NBBB98] is the Differentiated
Services’ interpretation of either the IPv4 Type of Service (TOS) field [Alm92], or the IPv6
Traffic Class byte, and is used for marking flow aggregates. Differentiated Services defines
the layout of this DS field as well as a set of per-hop behaviors (PHBs), where a PHB is the
forwarding behavior experienced at a DS-compliant node by packets with the same value of
the DS field. By marking the DS field of individual packets, customers can get different types
of services that are built with the PHBs.

20 Chapter 2. Preliminaries

The IETF has defined the Assured Forwarding (AF) PHB group [HBWW99] and the Ex-
pedited Forwarding (EF) PHB [DCB+02]. The AF PHB group defines four independently
forwarded AF classes. In each of these classes, IP packets can be assigned one of three dif-
ferent levels of drop precedence. The EF PHB can be used to build a service that can be
characterized by low delay, low jitter, low packet loss ratio, and guaranteed rate. The services
that can be built with the PHBs apply to aggregates of flows rather that to individual flows.
In the Differentiated Services, individual flows have no means for requesting delay or rate
guarantees.

2.2.3 Summary

The Integrated Services architecture provides the means to strictly control the quality of
service. However, Integrated Services does not scale in core networks, where the number of
flows is high. The Differentiated Services architecture does not have this scalability prob-
lem as it provides QoS to aggregates of flows, rather than to individual flows. Bernet et al.
[BFY+00] have proposed a framework for Integrated Services operation over Differentiated
Services networks. Such a framework makes it possible to use the Integrated Services ap-
proach in the access networks (e.g. wireless access network), where the number of flows is
relatively low, and to use the Differentiated Services approach in the core network, where the
number of flows is high.

Chapter 3

Scheduling Best Effort Traffic in Bluetooth

This chapter discusses the development of a Bluetooth polling mechanism that performs at
least as good as the existing Bluetooth polling mechanisms, while being able to provide
QoS if properly set. The chapter is structured as follows. Section 3.1 presents the prob-
lem description. Section 3.2 presents the work from the literature related to this chapter.
Section 3.3 explains the operation of the poller being developed, namely the Predictive Fair
Poller (PFP) [HAY01, AYH01b]. Section 3.4 presents an analysis of the stability, efficiency,
and fairness of the 1-limited Round Robin poller. Section 3.5 evaluates PFP and the most
important alternative polling mechanisms in a simulation study, and Section 3.6 concludes
this chapter.

3.1 Problem Description

3.1.1 Introduction

Bluetooth is a time-slotted wireless access technology where each second is divided into
1600 time slots. Time slots are either downlink slots, i.e., from the master to a slave, or uplink
slots, i.e., from the addressed slave to the master. Data is exchanged between the master and
a slave using Baseband packets that cover one, three or five time slots. Various other proto-
cols can be used on top of Bluetooth. For instance, IP over Bluetooth can be used, where IP
packets cover one or more baseband packets.

As mentioned in Chapter 2, the traffic within a piconet is controlled by the master of that
piconet such that a slave is only allowed to transmit if it was addressed (by the master) in
the previous time slot. In other words, the master polls the slaves giving them an opportunity
to transmit data. A master polls a slave either implicitly or explicitly, where an implicit poll
of a slave means that the master polls the slave by sending a packet containing data to that
slave. An explicit poll of a slave means that the master sends a packet with no payload (POLL
packet) to that slave, for instance when data destined for that slave is not available. Similarly,
a slave that has no data destined for the master responds to a poll with a packet with no pay-
load (NULL packet). Figure 2.4 shows an example of a master polling seven slaves.

3.1.2 Goals for a Poller

Bluetooth supports two types of links between a master and a slave: aSynchronous
Connection-Oriented(SCO) link and anAsynchronous Connection-Less(ACL) link. Packets
sent over an SCO link (SCO packets) cover one time slot, whereas packets sent over an ACL
link can cover one, three or five time slots.
In case of an SCO link between the master and a slave, the master polls that slave at regular
intervals. The addressed slave can then respond with an SCO packet. In case of an ACL link,
polling can be done in many different ways. The difference between the polling mechanisms

22 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

is related to the order in which slaves are polled and the service discipline used to serve a
slave. Goals for a poller are to obtain high efficiency, fairness and a low mean response time.
In the following subsections we discuss these performance goals, and relate them to concrete
metrics.

3.1.2.1 Efficiency

Slaves are only allowed to transmit if they were addressed in the previous time slot. If
a master wants to allow a slave to transmit, it can send a data packet to that slave if a data
packet is available. Otherwise, the master must send a POLL packet, i.e., a baseband packet
with no payload. On its turn, if the addressed slave has data to send back to the master, it
will send that data. Otherwise, it will send a NULL packet, i.e., a baseband packet with no
payload. We define theefficiency of a pollerover a period(a, b] as the ratio of the number of
time slots used for data transport to the sum of the number of POLL packets, the number of
NULL packets and the number of time slots used for data transport, i.e.,

η(a,b] =
d(a,b]

d(a,b] + p(a,b] + n(a,b]
, (3.1)

wherep(a,b] is the number of POLL packets during(a, b], n(a,b] is the number of NULL pack-
ets during(a, b], andd(a,b] is the number of time slots used for data transport during(a, b].

As can be seen in (3.1), given the same amount of used time slots (d(a,b] + p(a,b] + n(a,b]), a
higher number of POLL or NULL packets leads to a lower efficiency.

3.1.2.2 Total mean response time

Let us first define the waiting timeWi of an L2CAP packeti as the time between the
moment when the L2CAP packet becomes available and the moment when the transmission
of the first segment of that L2CAP packet starts. Furthermore, let us define the service time
Si of an L2CAP packeti as the time between the moment when the transmission of the
first segment of that L2CAP packet starts and the moment when the transmission of the last
segment of that L2CAP packet ends. Figure 3.1 shows the waiting time and service time of
an L2CAP packet that will be transmitted using one DH3 packet and one DH1 packet. The
total mean response timeMRT is the mean of the sum of the service time and the waiting
time taken over all the L2CAP packets transmitted in the piconet, i.e.,

MRT =
1
n

n∑
i=1

(Wi + Si) (3.2)

where the L2CAP packets transmitted in the piconet are numbered from 1 ton.

There are different ways for a polling mechanism to achieve the same value of efficiency.
However, the different algorithms will not necessarily lead to the same total mean response
time.

3.1. Problem Description 23

P

DH3
i

DH1
i

N

P

P

DH1
i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

W
i

S
i

DH3
i

Master

Slave

P

NPacket becomes availablei

Time slot number

DH

POLL packet

NULL packet

Data packet

i

Figure 3.1: Transmission diagram of an L2CAP packet

3.1.2.3 Fairness

In order to examine the fairness of a system, an allocation metric and a formula resulting
in a fairness index are needed. The allocation metric is the metric for which the fairness is
to be investigated, while the fairness index shows how fair the system is with respect to the
given allocation metric. Given allocation metricxi, we use the definition of fairness index
presented in [JCH84]:

f(x) =

{
1
n

∑n
i=1 xi

}2

1
n

∑n
i=1 x2

i

. (3.3)

This fairness index is bounded between zero and one, making it possible to show how near
the system is to total fairness (f(x) = 1) or to total unfairness (f(x) = 0). Furthermore,
whenever a single allocation changes, the fairness index will also change. Finally, this fair-
ness index is a linear measure of fairness. For instance, if there areU units to be divided
amongn users and we givem (m ≤ n) usersU

m units, then the fairness index will be equal
to m

n .

The next step is to decide whatxi should represent. In other words, an allocation metric
should be chosen. Possible allocation metrics are:

• Throughput

• Fraction of fair share (of resources)

• Waiting time, service time or response time

• Inverse fraction of reference waiting time

We have chosen fairness based on fraction of fair share and fairness based on inverse fraction
of reference waiting time. We will further define and justify our selection.

24 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Fairness based on Fraction of Fair Share

Consider a system in which an amount of resources are to be divided among users requesting
resources, and in which each useri requests an amount of resourcesdi. The fair shares of re-
sourcesfsi that should be allocated for each useri are determined based on the user demands
di in two stages. During the first stage, resources are equally divided between users that need
these resources, while no user gets more resources than it is requesting. The first stage ends
as soon as each user is allocated the resources it is requesting or as soon as there are no more
resources to divide. During the second stage, remaining resources, if any, are divided among
the users proportional to the resources that were allocated to them during the first stage.

Figure 3.2 shows an algorithm that performs the first stage of determining fair shares of
resources. First, this algorithm (step 1) checks whether the sum of the demands is lower than
the total amount of resources. In that case, each user is allocated an amount of resources
equal to its demand and the algorithm stops. Step 2 in the algorithm calculates the amount
of remaining resourcesC that can be divided among the users for which a fair share is not
determined yet. Based on this amount of remaining resourcesC and on the number of users
for which a fair share is not determined yet, step 3 calculates the fair share of resourcesAfair

that these users can get at most. In step 4, if a user does not need more than this fair share
Afair, it is allocated a share equal to its demand and it is removed from the list of remaining
users for which a fair share is not determined yet. If this list does not change during step 4,
this indicates that these remaining users need more than fair shareAfair. In that case, these
users are allocated an amount of resources equal toAfair (step 6) and the algorithm stops.
Otherwise, the algorithm returns to step 2. The following two examples show how resources
are divided among users based on this algorithm:

1. Suppose 100 units of resource must be divided among 4 users with demandsd =
{5, 10, 15, 20}. After the first stage, and as the sum of the demands is lower than
the available resources, each user gets a share equal to its demand and thusfs =
{5, 10, 15, 20}. During the second stage, the remaining resources are divided among
the users and the fair allocation of resources will befs = {10, 20, 30, 40}

2. Consider the same amount of resources and the same number of users as in example
1, but let the demands bed = {15, 25, 40, 50}. After the first stage, the allocated
resources will befs = {15, 25, 30, 30}. As the sum of the demands is higher than the
available resources, no more resources will be divided during the second stage. Hence,
the fair allocation of resources is the allocation that follows from the first stage.

We state that a system is fair based on fraction of fair share if each user gets the same fraction
of its fair share of resources. An allocation metric that will let the fairness index have this
meaning is the fraction of fair share

xi = ffsi =
si

fsi

, (3.4)

wheresi is the amount of resources actually given to useri (actual share) andfsi is the fair
share of resources for useri. This is similar to the fraction of demand presented in [JCH84].

With respect to a Bluetooth polling mechanism, the resources mentioned above correspond
to the wireless link resources, which can be represented as bit rates, slot rates or poll rates.
However, as mentioned in chapter 2, bit rates, slot rates and poll rates cannot directly be

3.1. Problem Description 25

a. Let Ctot be the total amount of resources

b. Let C be the remaining amount of resources that can be allocated, while initiallyC = Ctot

c. Let S be the set of remaining users to have their fair share determined, while initiallyS =
{1, 2, ..., n}, thus with cardinalitycard(S) = n

d. Let di be the resource demands of useri

e. Let Ai be the fair share for useri, while initially Ai = 0 , i = 1, 2, ..., n

f. Let Afair be the fair share given the remaining amount of resourcesC and the remaining users
S to have their fare share determined.

1. If
∑n

i=1 di < Ctot then∀i ∈ S let Ai = di and exit

2. C = Ctot −
∑n

i=1 Ai

3. Afair = C
card(S)

4. ∀i ∈ S with di ≤ Afair let Ai = di and remove useri from S

5. If S changed during step 4 andcard(S) ≥ 1 then goto step 2.

6. ∀i ∈ S let Ai = Afair

Figure 3.2: First stage of fair share determination procedure [RJC87]

translated into each other. Hence, it must be decided which resource a Bluetooth polling
mechanism must fairly divide among the users requesting it.

Chapter 2 also mentioned that the larger the used baseband packet size, the higher the slot
efficiency (average number of bytes per slot). Hence, in order to achieve higher slot efficien-
cies and thus saving more time slots, Bluetooth nodes should be encouraged to transmit their
data as efficient as possible. This can be achieved by considering the available polls as the
available resources to be fairly divided, i.e., by fairly dividing polls between users that need
to be polled. In that case, slaves will try to transmit as much as possible data per poll.

Fairness based on inverse fraction of reference waiting time

It is possible that two polling mechanisms show the same value for the fairness based on
fraction of fair share, the same value for the efficiency and the same total mean response
time. Nonetheless, one of the mechanism can be preferred over the other. For instance,
consider a system with a master with capacityC and two slaves, where at both slaves a large
burst of data, equal toCTh (with Th in seconds), arrives at timet = 0 sec. Consider the
following two polling mechanisms (M1 and M2):

M1: The master polls slave 1 is during time period[0, 1
2Th), whereas slave 2 is polled during

time period[12Th, Th).

M2: The master polls slave 1 and slave 2 in a 1-limited Round-Robin fashion during time
period[0, Th).

Taken over the time period[0, Th), both polling mechanisms will obtain the same fairness
based on fraction of fair share (equal to 1), the same efficiency, and the same total mean re-
sponse time (equal toTh

2). However, with polling mechanism M2, packets from both slave 1

26 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

and slave 2 experience the same mean response time, whereas with polling mechanism M1
packets from slave 1 experience a lower mean response time than packets from slave 2 do.
We state that polling mechanism M2 is more fair than polling mechanism M1, and introduce
an additional performance metric to express this, namely fairness based on inverse fraction
of reference waiting time.

The reference mean waiting timeWRi of packets from a useri is defined as the mean waiting
time that would be experienced by those packets if they were transmitted over a link with
a constant bit rateRi. The constant bit rateRi corresponds to the average throughput that
the same user would experience in the Bluetooth polling system given the same packet size
distribution, a fair sharefsi (in polls/sec), and an arrival rate that is higher than the fair share
(fair poll rate).

Consider a slavei at which packets of an average sizeLi arrive according to an arrival process
that is characterized by arrival rateλi and variability parameterc2

ai
, which is defined as the

squared coefficient of variation of the inter-arrival time. Furthermore,fsi is the fair share
of resources that slavei should get. The continuous bit rate that is used to determine the
reference waiting timeWRi is

Ri = fsiLi. (3.5)

The reference mean waiting time of a slavei is determined using the waiting time approxi-
mations presented in [Whi83], namely

WRi
∼=

τiρi(c2
ai

+ c2
si

)gi

2(1− ρi)
, (3.6)

wheregi ≡ gi(ρ, c2
ai

, c2
si

) is defined as

gi(ρ, c2
ai

, c2
si

) =

 e
(− 2(1−ρi)

3ρi

(1−c2ai
)2

c2ai
+c2si

)
, for c2

ai
< 1,

1, for c2
ai
≥ 1,

(3.7)

where the service time is characterized by mean service timeτi = Li

Ri
and variability param-

eterc2
si

. As we assume a constant bit rateRi, the variability parameter of the service time
equals the variability of the packet sizes.

Given a determined reference mean waiting timeWRi for slavei and the actual mean waiting
timeWi we let the fairness index of (3.3) have as meaning fairness based on inverse fraction
of reference waiting time by defining the allocation metricxi as

xi =
1

Wi

WRi

=
WRi

Wi

. (3.8)

3.2 Related work

Scheduling the traffic from a master to a slave and vice versa is referred to as Blue-
tooth polling, Bluetooth MAC scheduling or intra-piconet scheduling, while scheduling the

3.2. Related work 27

node’s participation in different piconets is referred to as inter-piconet scheduling. Bluetooth
polling mechanisms are studied in [CGK01, JKJ99, MKM04, KBS99, CKR+00, CKK+01,
DGR+01, BCG01, RBK01], and [PH03]. We will briefly describe them in this section.

3.2.1 Cyclic polling

The 1-limited Round-Robin (RR) poller is a very simple poller that polls slaves in a
cyclic manner, regardless of the availability of data. Every time a slave is polled, that slave is
allowed to transmit exactly one Baseband packet. In case of symmetric loads, the 1-limited
Round Robin poller obtains the maximum obtainable fairness and efficiency. However, con-
sider a polling system withN slaves with asymmetric loads, where some slaves require more
than 1

N of the total available number of polls and other slaves require less than1
N of the total

available number of polls. Also consider the total needed number of polls to be less than the
total available number of polls. In this case the poller fails both to be fair based on fraction
of fair share and fails to be efficient. The reason for the poller not being fair is that the poller
will give the slaves requiring more than1N of the total available number of polls no more than
1
N of the total available number of polls. The reason for the poller not being efficient is that
the poller will poll the slaves requiring less than1N of the total available number of polls even
when they have no data to transmit.

Besides the 1-limited round robin poller, other pollers that poll slaves in a cyclic manner ex-
ist. The exhaustive Round Robin poller polls the slave in a cyclic manner, and the next slave
is polled only if all the data available at the current slave is served. The exhaustive Round
Robin poller can handle load that is asymmetrically distributed among the slave, but has the
disadvantage that a busy slave can consume all the bandwidth. Note that a non-cyclic version
of this poller, namely Exhaustive Pseudo-cyclic Master queue length poller (EPM) has been
proposed in [CGK01]. The main difference with the exhaustive Round Robin poller is that,
at the beginning of each cycle, the cycle order is defined according to a decreasing master to
slave queue length order.

Then-limited Round Robin poller is also a cyclic poller, where the next slave is polled ifn
packets are served from the current slave or if the current slave has no more packets to be
served. Then-limited Round Robin poller can handle load that is asymmetrically distributed
among the slaves up to a given asymmetry level as long asn is set correctly. An extended
version of then-limited Round Robin poller is the Limited and Weighted Round Robin poller
(LWRR), which is proposed in [CGK01]. It adopts a weighted Round Robin algorithm with
dynamically changed weights. Each slave is assigned a weight, which is initially set toMP
(Maximum Priority), and which is at least equal to 1. Each time a slavei is polled and no
data is exchanged, the weight of that slave is decreased by 1. As soon a slavei is polled and
data is exchanged, the weight of that slave is increased toMP .

Another cyclic poller is the Deficit Round Robin (DRR) poller [SV96], which is similar to
the 1-limited Round Robin poller, except that each slave is assigned a given time quantum
during a polling cycle. If a queued packet is larger than the time quantum, that packet is
not served, and the remainder from the current quantum is added to the quantum in the next
cycle. In other words, DRR keeps track of deficits, i.e., slaves are compensated for missed
service time in a next cycle.

28 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

3.2.2 Fair Exhaustive Polling

The Fair Exhaustive Poller (FEP) is described in [JKJ99]. The main idea behind FEP is
to maintain two lists. A list of active nodes (AN) and a list of non-active nodes (NN). A slave
belongs either to the list of active nodes or to the list on non-active nodes depending on the
activity of that slave. When the polling starts, the poller moves all the slaves to the list of
active nodes and the nodes in the active list are polled in a Round-Robin way. Inactivity of a
slavei can be detected by using an inactivity metric. For instance, this inactivity metric can
be the number of successive unsuccessful polls of slavei, where an unsuccessful poll refers
to a poll in the absence of data to be transmitted, or some function of the hit ratio of that slave,
which is the success ratio of a poll for that slave. Whenever the inactivity metric of slavei
exceeds a predefined threshold, slavei is moved to the list of inactive nodes. Furthermore, a
maximum inter-poll timeTpolli is defined for each slavei. After being in the list of inactive
nodes for at most a timeTpolli , the slave is polled again. If a polled slavei responds with
data (successful poll), that slave is returned to the list of active nodes.

3.2.3 Adaptive Cycle-Limited Scheduling

The Adaptive Cycle-Limited Scheduling algorithm, which is introduced in [MKM04],
is based on two main concepts. First the piconet cycle time is limited in order to maintain
a maximum poll interval. Second, it tries to minimize packet delays by adjusting the time
allocated to each slave. The highly loaded slaves will get a larger portion of the cycle time,
while the lowly loaded slaves will get a smaller portion.

3.2.4 HOL Priority and HOL K-Fairness Scheduling

Kalia et al. introduced two scheduling policies, which they labeled as Master-Slave
Queue-State-Dependent Packet Scheduling policies [KBS99] [KBS00]. The policies they
introduced assume knowledge of the head-of-line (HOL) packet at both the master and the
slaves. In the presence of an SCO channel, and thus in case of the availability of a (small)
fixed number of time slots between an SCO packet from a slave and the next SCO packet from
the master, master-slave pairs are classified in different classes depending on the amount of
wasted slots when serving the slave belonging to that master-slave connection. For instance,
consider the case in which the number of slots between an SCO packet from a slave and the
next SCO packet from the master is four time slots. If the master has a head-of-line packet of
three time slots destined for a particular slave and if that slave has no data packet available for
transmission, then that master-slave connection belongs to the class of master-slave connec-
tions that cause one time slot to be wasted. Having these classes of master-slave connections
they defined two policies to serve slaves belonging to these classes:

• HOL Priority Policy: the master-slave pairs are served in a weighted Round Robin1

manner, where each master-slave pair has a priority that depends on the class they be-
long to (the higher the number of wasted slots, the lower the priority). A delay compar-
ison of the HOL Priority Policy with other polling schemes that also have knowledge
of the slave to master queues can be found in [CGK01].

1Each slave is polled a number of times, that depends on its weight, before the next slave is polled.

3.2. Related work 29

• HOL K-Fairness Policy (HOL-KFP): the backlogged master-slave pairs are visited in a
Round Robin manner. However, up to a bound, master-slave pairs belonging to classes
with higher wastage transfer service to master-slave pairs belonging to classes with
lower wastage.

3.2.5 Flow-bit based polling

The polling mechanisms of this type are described in [DGR+01] and use the flow bit
present in the payload header field of the baseband packet. A variableflow is defined, which
is set to one if the flow bit in either direction is set to one. Three polling mechanisms are
described:

• Adaptive Flow-based Polling (AFP): Each master-slave connection starts with a nego-
tiated minimum polling intervalP0, where a polling interval is the maximum interval
before which the slave belonging to this master-slave connection must be served. Fur-
thermore, AFP uses an adaptive polling interval that changes based on the variable
flow . If for a master-slave connectionflow = 1 and the head-of-line packet to the par-
ticular slave is a data packet then the data packet is transmitted and the variable polling
interval is set to its minimum, i.e.,P = P0. If for a master-slave pairflow = 0 and
the head-of-line packet is a data packet then the data packet is transmitted and the vari-
able polling interval is kept unchanged. Furthermore, if a POLL packet is transmitted
and a NULL packet is received then the variable polling interval is doubled unless a
maximum polling intervalPthresh is reached.

• Sticky poller: The slaves are served in a cyclic manner. However, if for a master-slave
pair flow = 1 then when the turn of the particular slave arrives it will be served a
maximumnum sticky times before serving the next slave. On the other hand, if for a
master-slave pairflow = 0 then when the turn of the particular slave arrives it will be
served only once.

• Sticky Adaptive Flow-based Polling (StickyAFP)is similar to AFP except for the fol-
lowing: if for a master-slave pairflow = 1 and the head-of-line packet to the particular
slave is a data packet then when the turn of the particular slave arrives it will be served
a maximumnum sticky times before serving the next slave.

3.2.6 Efficient Double Cycle Scheduling Algorithm

The Efficient Double Cycle Scheduling Algorithm (EDC) is described in [BCG01]. The
main idea behind this algorithm is decoupling the scheduling of the transmissions in the
uplink direction and the transmissions in the downlink direction. The authors introduced the
idea of a double polling cycle: an uplink polling sub cycle (CycleUP) and a downlink polling
sub cycle (CycleDW). Before each cycle the master selects a set of slaves that are eligible for
polling, which are referred to asE(UP) andE(DW). E(DW) is determined by considering
the local master to slave queues. On the other hand,E(UP) is determined based on the poll
results. If a poll resulted in the slave responding with a NULL packet then that slave will
be skipped a numberwk of CycleUP ’s, while wk is increased each time a NULL packet is

30 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

received up to a maximumwmax. As soon as a slave responds to a poll with a data packet
thenwk will be set to one and that slave will be included in the nextE(UP).

3.2.7 Demand-based Bluetooth Scheduling

The demand-based Bluetooth scheduling algorithm is described in [RBK01]. Consid-
ering the polling positions (slots) of synchronous slaves and the polling positions of slaves
that belong to more than one piconet (shared slaves), this scheduling algorithm is used to
schedule transmissions to (and from) the remaining asynchronous slaves, which are referred
to as asynchronous dedicated slaves (ADS). Each ADS has a current polling periodn and a
time-stampt that is increased byn whenever that ADS is polled. Initially each ADS polling
period is set to the number of asynchronous dedicated slavesD. During a slot that is not used
by synchronous slaves or shared slaves, the ADS with the smallest time stamp is polled. If
the polling of an ADS resulted in a POLL and a NULL packet, then the polling intervaln of
that ADS is increased with a constant valuem unless a maximum polling intervalnmax will
be exceeded. In that case the master would consider parking that ADS. On the other hand, if
the polling of an ADS resulted in data being transmitted in either or both direction then the
polling interval of that ADS will be reset toD. Note that the maximum polling intervalnmax

is chosen such that if the polling period of an ADS isn = nmax then that slave is inactive
enough to be parked.

3.2.8 Sniff-based polling

One of the operation modes of a Bluetooth node described in the Bluetooth specification
is the sniff mode. The sniff mode is used to reduce a slave’s listen duty cycle. Consequently,
if a slave is in sniff mode then the master can only start transmission to that slave in specified
time slots. These time slots are called sniff slots and are spaced regularly with an interval
of Tsniff. The polling mechanisms described in this section are introduced in [CKR+00]
and [CKK+01], and make use of the sniff mode. Considering the fact that polling an inactive
slave is a waste of power and bandwidth and considering the fact that switching a slave to
sniff mode and back also costs power and bandwidth the main idea behind this mechanisms is
to switch a slave to sniff mode whenever switching a slave to sniff mode and back costs less
power and bandwidth than staying in active mode (normal operation mode). The following
switching policies have been defined in [CKR+00] and [CKK+01]:

• Mean Policy (MEAN): Assuming that the inter-arrival time between the last burst of
data packets and the next burst of data packets is correlated to the inter-arrival times of
the previous bursts of data packets, the master and the slave store the mean of the last
several inter-arrival times of data packet bursts. The minimum of the mean of the inter-
arrival time of bursts of data packets at the master destined for a particular slave and the
mean of the inter-arrival time of bursts of data packets at that particular slave destined
to the master is taken to be the expected next inter-arrival time of bursts of data packets
to or from that particular slave. Consequently, that slave is switched to sniff mode with
a sniff interval equal to that minimum. As soon as the master or that particular slave
receives more than two packets (destined for the other side of the master-slave connec-
tion) at their queues then the slave is switched back from sniff mode when the master

3.3. Predictive Fair Polling 31

polls the slave again.

• Last Inter-Burst Time (LIBT): Assuming high correlation between two consecutive
inter-arrival times of bursts of data packets, the last inter-arrival time of bursts of data
packets is used as the predicted value for the next inter-arrival time of bursts of data
packets. This is done for both traffic from the master to a particular slave and from that
particular slave to the master. The minimum of the two expected inter-arrival times
is used as a sniff interval when switching that particular slave to the sniff mode. The
criteria for switching that particular slave back from sniff mode is the same as in the
MEAN policy.

• Queue Status based Polling Interval (QSPI): Whenever there is no data destined to
send to a particular slave then that slave is switched to sniff mode with a fixed value
for the sniff interval. In sniff mode, the slave can be in one of two state: state I with
the mentioned fixed sniff interval and state II with double the sniff interval from state
I. When the slave is switched to sniff mode it will be first in state I. If a slave in state
I is polled and that slave has no data destined for the master then that slave is moved
to state II. If a slave in state I is polled and that slave has one packet destined for the
master then that slave remains in state I, otherwise it is switched back from sniff mode.
On the other hand, if a slave in state II is polled while it has two packets destined for
the master then it is moved to state I. If a slave in state II is polled and it has more then
two packet destined for the master then it is switched back from sniff mode, otherwise
the slave remains in state II.

• Adaptive Probability-based Polling Interval (APPI): Slaves are put in sniff mode us-
ing probabilistic estimates of inactivity which are based on the previous traffic arrival
pattern.

3.2.9 Adaptive Share Polling

The Adaptive Share Polling (ASP) mechanism, which is proposed in [PH03], aims at
avoiding the following two situations. First, it tries to avoid polling slaves that do not have
data available for transmission by keeping track of the share of bandwidth needed by each
slave. Second, it prevents the slaves from listening when knowing that they will not be polled
for a while. For that, ASP puts slaves in hold mode for periods that depend on the traffic load.

3.3 Predictive Fair Polling

As mentioned in Section 3.1.2, it is a goal for pollers to be efficient, to be fair, and to
obtain low delays. The 1-limited Round-Robin poller is neither efficient nor fair when the
load is asymmetrically distributed among the slaves. On the other hand, the other pollers
mentioned in the previous section are to a certain extent fair and efficient, which is sufficient
for most best effort applications (e.g. web browsing, email, file transfer etc. . .). However,
QoS applications (e.g. audio and video transfer) will play an important role in the usage of
the Bluetooth technology. With respect to QoS traffic handling, the pollers mentioned in the

32 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

previous section will not be able to handle QoS traffic as such. Consequently, we decided to
come up with a poller that performs as good as the existing pollers in the best effort case, and
that can be extended to handle QoS traffic.

We have introduced a poller named Predictive Fair Poller (PFP) [HAY01, AYH01b], which
takes both efficiency and fairness into account. It predicts for each slave whether data is avail-
able or not and it keeps track of the fairness. Based on these two aspects it decides which
slave to poll next. In the Best Effort case, the Predictive Fair Poller estimates the fair share
of resources for each slave and keeps track of the fractions of these fair shares that each slave
has been given. The Predictive Fair Poller can be used to poll Best Effort traffic in a fair and
efficient manner by keeping track of both the fairness based on these fractions of fair share
and the predictions. In the QoS case, QoS requirements are negotiated with the slaves and
translated to fair QoS treatments. The poller keeps track of the fractions of these fair QoS
treatments that each slave has been given. Similar to the Best Effort case, the Predictive Fair
Poller can be used to poll QoS traffic such that the QoS requirements are met by keeping
track of the fairness based on these fractions of the fair QoS treatments.

First, we show and explain the building blocks of the Predictive Fair Poller. Subsequently,
we discuss the implementation of these building blocks for the Best Effort case. For the sake
of simplicity we discuss the Predictive Fair Poller only for traffic destined from the slaves to
the master. However, we will indicate how the Predictive Fair Poller can also handle traffic
from the master to the slaves.

3.3.1 Building blocks of PFP

The selection of the next slave to be polled is performed by the PFP Slave Selector, which
is shown in Figure 3.3. It is located in the master and requires knowledge of the results (PR)
of its poll decisions. The PFP Slave Selector can be fed with a Traffic Demand (TD i) for
each slavei in order to support QoS traffic. However, if a slave does not make its traffic
demand known to the master then the Traffic DemandTDe

i estimated by the Traffic Demand
Estimator in the Slave Status Tracker (see also Figure 3.4) will be used instead. In other
words, the Traffic Demand (TD ′

i
) is either the Traffic Demand (TD i) made known by slave

i (e.g. QoS case) or the Traffic DemandTDe
i estimated by the Traffic Demand Estimator in

case slavei did not make its Traffic Demand known to the master (Best Effort case).

The Fair Share Determinator in the PFP Slave Selector uses the Traffic Demands (TD ′
1..TD ′

7)
to determine the Fair Share (fsi) of bandwidth for each slavei.

Besides a Traffic Demand Estimator the Slave Status Tracker also contains a Fraction of Fair
Share Determinator and a Data Availability Predictor. The Fraction of Fair Share Determina-
tor in Slave Status Trackeri uses the Fair Share (fsi) determined by the Fair Share Determi-
nator and the Poll Results (PR) to determine the Fraction of Fair Share of bandwidth (ffsi)
that slavei has been given. The Data Availability Predictor in Slave Status Trackeri uses
the Traffic Demand (TD ′

i
) and the Poll Results (PR) to determine the probability (Pdatai) of

data being available for transmission from slavei to the master.

The probabilities (Pdatai
) of data being available for transmission from each slavei to the

3.3. Predictive Fair Polling 33

master and the Fractions of Fair Share of bandwidth (ffsi) that each slavei has been given
are used by the Decision Maker to decide which slave to poll next. The decision rules depend
on the requirements on both the efficiency and the fairness.

TD Provided Traffic Demand (QoS)

TD’ Traffic Demand

PR Poll Result of the last poll

fs Fair Share

ffs Fraction of Fair Share

NSP Next Slave to Poll

Pdata Probability of data being available for

transmission

PFP Slave Selector

F
a

ir
S

h
a

re
(f

s)
D

e
te

rm
in

a
to

r S
la

v
e

S
ta

tu
s

T
ra

c
k
e

r
1

S
la

v
e

S
ta

tu
s

T
ra

c
k
e

r
2

D
e

c
is

io
n

M
a

k
e

r

fs
1

TD'
1

fs
2

TD'2

ffs1

P
data1

ffs2

P
data2

PR

TD
1

TD
2

TD
7

NSP

S
la

v
e

S
ta

tu
s

T
ra

c
k
e

r
7

fs
7

TD'
7

ffs7

P
data7

Figure 3.3: Block diagram of the PFP Slave Selector

3.3.2 Implementation of PFP for the Best Effort case

In the Best Effort case the poller is not given any information about the offered load.
This means that neither the L2CAP packet sizes (and thus the number of Baseband packets
belonging to the same L2CAP packet) nor the inter-arrival times of these L2CAP packets are
known to the poller. Furthermore, the distribution of the inter-arrival times of these L2CAP
packets is also unknown. As a result, we decided to assume that the load is generated accord-
ing to a Poisson process, i.e., the L2CAP packets are generated with exponential inter-arrival

34 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Fraction

of Fair Share

Determinator

Data

Availability

Predictor

Traffic Demand

Estimator

Slave Status Tracker

QoS BE

TD

TD
e

TD’

PR

fs

TD
e

Estimated Traffic Demand (BE)

TD’

TD

Traffic Demand

Provided Traffic Demand (QoS)

PR Poll Result of the last poll

fs Fair Share

ffs Fraction of Fair Share

Pdata Probability of data being available for

transmission

ffs

P
data

Figure 3.4: Block diagram of the Slave Status Tracker

times. Depending on their size, L2CAP packets may be segmented into multiple segments
(see also Section 2.1.6). During this section we will use the following terminology:

• Macro poll is a poll to which a slave responds with a first segment of an L2CAP packet
or with a NULL packet.

• Macro success is a macro poll resulting in a first segment of an L2CAP packet.

• Macro poll time is the time at which a macro poll takes place.

• Macro success time is the time at which a macro success takes place.

• Macro success ratio is the ratio of the total number of macro successes to the total
number of macro polls.

• Micro poll is a poll to which a slave responds with a continuation segment of an L2CAP
packet.

• Micro poll time is the time at which a micro poll takes place.

3.3. Predictive Fair Polling 35

3.3.2.1 Markov chain analysis

By means of a Markov chain analysis, we present an expression for the probabilityPdatak

of data being available at the queue in slavek, which will be determined by the Data Avail-
ability Predictor (see Figure 3.4 and Section 3.3.2.3). For the sake of simplicity, we restrict
ourselves to L2CAP packets that fit in a single baseband packet, and thus to the case in which
micro polls do not occur. As a result, a poll always refers to a macro poll in this section. In
Section 3.3.2.2, this restriction is released again.

If packet arrivals are generated according to a Poisson process we can give a formula for
the probabilityPdatak

of data being available at the queue in slavek. In order to derive this
formula we introduce the following Markov chain for one slave (see also Figure 3.5):

0t t1 t2 t3 t4

T4T3T2T1

tn

Tn

tn−1
time

Figure 3.5: Polling instants at a slave

Let timet0 be the last time this slave has been unsuccessfully polled (i.e., there was no packet
available for transmission to the master). Time periodT1 is the time period between the last
unsuccessful poll and first successful poll, and time periodsT2..Tn−1 are the time periods
between two successful polls (i.e., there was at least one packet available for transmission at
the slave att−1 , t−2 ...t−n−1, wheret− = t − δ with δ ↓ 0). Now, let Xn be the number of
L2CAP packets available for transmission at the slave att−n . Xn is a time-inhomogeneous
Markov process that represents the number of L2CAP packets available for transmission at
the slave and is therefore non-negative. Furthermore, at most one packet can be drained when
polling a slave, which results in the following relationship

Xn ≥ Xn−1 − 1 , for Xn−1 > 0,
Xn ≥ 0 , for Xn−1 = 0.

(3.9)

Whenever just before a poll, there is at least one packet available for transmission at the
polled slave (i.e.,Xn−1 = i > 0), then one packet will be drained during that poll and
the probability ofXn = j packets (j ≥ i − 1) being available for transmission just before
the subsequent poll is the probability ofj − (i − 1) arrivals between the two polls. On the
other hand, if just before a poll, no packet is available for transmission at the polled slave
then no packet is drained during that poll and the probability ofXn = j packets (j ≥ 0)
being available for transmission just before the subsequent poll is the probability ofj arrivals
between the two polls. This leads to the following transition probabilities

36 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Pij(n) = P (Xn = j | Xn−1 = i) (3.10)

=


e−λTn (λTn)j−i+1

(j−i+1)! , j ≥ (i− 1),
0, j < i− 1,

i > 0,

e−λTn (λTn)j

j! , i = 0,

0, i < 0,

(3.11)

whereλ is the arrival rate of packets. Furthermore, let us defineqj(n) as the probability ofj
packets being available at the slave att−n

qj(n) = P (Xn = j | Xn−1 ≥ 1, ..., X1 ≥ 1, X0 = 0). (3.12)

Rewriting the probability in (3.12) as a joint probability gives

qj(n) =
P (Xn = j, Xn−1 ≥ 1 | Xn−2 ≥ 1, ..., X1 ≥ 1, X0 = 0)

P (Xn−1 ≥ 1 | Xn−2 ≥ 1, ..., X1 ≥ 1, X0 = 0)
. (3.13)

Breaking up the probability in the numerator in (3.13) into the possible ways ofXn−1 ≥ 1
gives

qj(n) =
∞∑

i=1

P (Xn = j,Xn−1 = i | Xn−2 ≥ 1, ..., X1 ≥ 1, X0 = 0)
P (Xn−1 ≥ 1 | Xn−2 ≥ 1, ..., X1 ≥ 1, X0 = 0)

. (3.14)

Rewriting the probability in the numerator as a conditional probability gives

qj(n) =
∞∑

i=1

{P (Xn = j | Xn−1 = i,Xn−2 ≥ 1, ..., X1 ≥ 1, X0 = 0)

· P (Xn−1 = i | Xn−2 ≥ 1, ..., X1 ≥ 1, X0 = 0)
P (Xn−1 ≥ 1 | Xn−2 ≥ 1, ..., X1 ≥ 1, X0 = 0)

}. (3.15)

As (Xn, n ≥ 0) is a Markov chain, stateXn is only dependent on stateXn−1, and hence

qj(n) =
∑∞

i=1 {Pij(n)P (Xn−1 = i | Xn−2 ≥ 1, Xn−3 ≥ 1, ..., X1 ≥ 1, X0 = 0)}
P (Xn−1 ≥ 1 | Xn−2 ≥ 1, Xn−3 ≥ 1, ..., X1 ≥ 1, X0 = 0)

.

(3.16)
From (3.12) and (3.16), it follows that

qj(n) =
∑∞

i=1 qi(n− 1)Pij(n)
1− q0(n− 1)

. (3.17)

As Pij(n) = 0 for i > j + 1 (see (3.11)), (3.17) can be rewritten as

qj(n) =
∑j+1

i=1 qi(n− 1)Pij(n)
1− q0(n− 1)

, (3.18)

with

qj(1) = P0j(1) = e−λT1
(λT1)j

j!
. (3.19)

3.3. Predictive Fair Polling 37

The desired probability of data being available for transmission at timet−n at slave is

Pdata(t−n) = 1− q0(n). (3.20)

Expanding (3.20) for the first four polls while assuming the last unsuccessful poll took place
at t0 results in (3.21) to (3.24):

Pdata(t−1) = 1− q0(1)

= e(−λT1). (3.21)

Pdata(t−2) = 1− q0(2)

=
λT1e

(−λ(T1+T2))

−1 + e(−λT1)
. (3.22)

Pdata(t−3) = 1− q0(3)

=
e(−λ(T1+T2+T3))λ2T1(2T2 + T1)
−1 + e(−λT1) + e(−λ(T1+T2))λT1

. (3.23)

Pdata(t−4) = 1− q0(4)

= {e(−λ(
∑4

i=1 Ti))λ3T1(2T3T2 + T3T1 + T2
2 + T1T2 +

T1
2

3
)}

·{(−2 + 2e(−λT1) + 2e(−λ(T1+T2))λT1 + 2e(−λ(T1+T2+T3))λ2T1T2

+e(−λ(T1+T2+T3))λ2T1
2)}−1. (3.24)

It can be seen that the expressions are becoming larger for increasing number of successive
successful polls. Besides the size of the expression, the number of inter-poll times that must
be remembered also (linearly) increases with the number of successive successful polls. We
believe that an algorithm based on (3.18) is hard to implement. We will therefore make some
simplifications.

An extensive search for a way to writePdata(tm) as a function ofPdata(t1)..Pdata(tm−1) or
as a function of the numerators and the denominators ofPdata(t1)..Pdata(tm−1) did not give
any result. Consequently, we decided to simplify the model.

0t t1 t2 t3 t4

T4T3T2

tntn−1

Tn

n−1T’

time

T1

Figure 3.6: Polling instants at a slave: a Simplification

In order to get a simple approximation for the probability of data being available for trans-
mission at a slave at timet−n we do not consider the separate time periods anymore, but the
time periodT ′

n−1 from the last unsuccessful poll to the last poll and the time periodTn from
the last poll until now, where

T ′
n =

n∑
i=1

Ti =
{

Tn, n = 1.
T ′

n−1 + Tn, n > 1,
(3.25)

38 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Given the case depicted in Figure 3.6, we know that there was at least one arrival duringT1,
at least two arrivals duringT1 + T2, and so on. In other words, the probability of data being
available for transmission attn is the probability of at least1 packet arrival duringTn plus
the probability of zero packet arrivals duringTn and more thann − 1 packet arrivals during
Tn−1, of whichn− 1 arrivals arrive such that then− 1 preceding polls are successful, i.e.,

Pdata(t−n) = P ′
data(t−n) + (1− P ′

data(t−n))P ′′
data(t−n), (3.26)

where

P ′
data(t−n) = P (at least 1 arrival duringTn), (3.27)

and

P ′′
data(t−n) =

0, n = 1,

P (at leastn arrivals duringT ′
n−1 givenn− 1 successful polls)

P (at leastn− 1 arrivals duringT ′
n−1 givenn− 1 successful polls)

, n > 1.

(3.28)

The approximation we apply concerns then − 1 arrivals duringT ′
n−1. We ignore the fact

that each of these arrivals took place in a specific time period, i.e., the first arrival inT1, the
second arrival inT1 + T2 but after the first arrival, and so on. Because we ignore this in both
the numerator and the denominator of (3.28), we conjecture and will show in Figure 3.7 that
the effect of ignoring this will be acceptable. (3.28) will be replaced by

P ′′
data(t−n) =


0, n = 1,

P (at leastn arrivals duringT ′
n−1)

P (at leastn− 1 arrivals duringT ′
n−1)

, n > 1.
(3.29)

Based on this approximation and taking into account the fact that the arrivals are generated by
a Poisson process with parameterλ, the probability of data being available for transmission
at t−n is

Pdata(t−n) =


(1− e−λTn), n = 1,

(1− e−λTn) + e−λTn

∑∞
i=n e

−λT ′n−1
(λT ′n−1)i

i!∑∞
i=n−1 e

−λT ′
n−1

(λT ′
n−1)i

i!

, n > 1,
(3.30)

and thus

Pdata(t−n) =


(1− e−λTn), n = 1,

(1− e−λTn) + e−λTn
1−

∑n−1
i=0 e

−λT ′n−1
(λT ′n−1)i

i!

1−
∑n−2

i=0 e
−λT ′

n−1
(λT ′

n−1)i

i!

, n > 1.
(3.31)

3.3. Predictive Fair Polling 39

In order to examine the validity of (3.31) consider a polling system where the poller polls a
queue as soon asPdata equals a predefined poll thresholdpth, and where infinitely small data
packets arrive at the queue according to a Poisson process with rateλ. Only if the queue is
non-empty and the poller polls that queue, then exactly one packet will be served. Based on
the law of large numbers, ifPdata exactly represents the probability of data being available
for transmission, then the hit ratio of the poller (ratio of the number of successful polls to the
total number of polls) should be equal to the probabilityPdata = pth at which the poller polls
a slave.

We have written a simulation program where packets arrive at a queue according to a Poisson
process with rateλ. The probabilityPdata of data being available at that queue is calculated
using the simplified formula in (3.31). As soon asPdata = pth, that queue is polled and the
head of line packet, if available, is served. Figure 3.7 shows the hit ratio of the considered
poller for different poll thresholds. Note that a poll sequence number ofn = m is a poll that
is preceded bym−1 successful polls, i.e., a poll with sequence numbern = 1 is the first poll
after an unsuccessful poll. As we can see, the average hit ratio approaches the poll threshold
pth for each poll sequence number, which suggests that (3.31) is a good approximation for
(3.20).

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

H
it

ra
tio

p
th

=0.9
p

th
=0.7

p
th

=0.5
p

th
=0.3

p
th

=0.1

Figure 3.7: Hit ratio as a function of poll sequence number n for different pth

3.3.2.2 Traffic Demand Estimator

Because an exponential inter-arrival time of packets is assumed, the Traffic Demand
Estimator only needs to estimate the arrival rate of the L2CAP packets. For this the Traffic
Demand Estimator calculates, with smoothing factorαtde, an exponential moving average of
the macro success rate taken over the lastntde macro successes, i.e.,

40 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

TDe
i = (1− αtde) ˆTDe

i + αtde
ntde − 1

tms
i [1]− tms

i [ntde]
, (3.32)

where ˆTDe
i is the previous value ofTDe

i , and wheretms
i [n] is then-th last macro success time

of slavei. Note that the arrival rate can only be determined correctly if the macro success
ratio is less than unity. In case the macro success ratio equals unity, the actual arrival rate
of packets is probably higher than the macro success rate, meaning that there is probably a
queue overflow at the slave.

3.3.2.3 Data Availability Predictor

The Data Availability Predictor predicts whether a particular slave has a baseband packet
waiting for transmission. In case the last poll to that slave resulted in a successful poll,
the Data Availability Predictor checks whether the L2CAP packet, which the last baseband
packet belongs to, is completely received. One way of doing this is looking at the payload
size of the last received Baseband packet from that slave, where a full Baseband packet serves
as an indication that it is likely that a continuation Baseband packet is waiting at the slave.
If the Data Availability Predictor finds out that a continuation baseband packet is waiting at
the particular slave, then it indicates that another baseband packet is waiting at the particular
slave, i.e.,

Pdatai
= 1. (3.33)

In case the last poll to a particular slave resulted in a NULL packet to be received, or in case
the Data Availability Predictor finds out that no continuation baseband packets are waiting
at the particular slave, the Data Availability Predictor calculates the probability of data being
available at the particular slave using (3.31), i.e.,

Pdatai
=


(1− e−TDe

iTn), n = 1,

(1− e−TDe
iTn) + e−TDe

iTn
1−

∑n−1
i=0 e

−TDe
i T ′n−1

(TDe
i T ′n−1)i

i!

1−
∑n−2

i=0 e
−TDe

i
T ′

n−1
(TDe

i
T ′

n−1)i

i!

, n > 1,
(3.34)

wheren− 1 is the number of macro successes since the last unsuccessful poll, and whereTn

andT ′
n−1 are defined as is Figure 3.6.Tn andT ′

n−1 are extracted from poll resultPR.

3.3.2.4 Fair Share Determinator

For the Best Effort case we want the poller to divide the available polls among the slaves
according to the two-stages method explained in Section 3.1.2.3. Consider packets arriving
at a each slavei with rateTDe

i . The instantaneous fair sharefs ′i of each slavei is determined
according to the two-stages method explained in Section 3.1.2.3, where the demands are
given bydi = TDe

i and whereCtot is the total amount of available polls. The fair share is
determined by calculating, with smoothing factorαfs, the exponential moving average of the
instantaneous fair share, i.e.,

fsi = (1− αfs) ˆfsi + αfsfs ′i, (3.35)

3.3. Predictive Fair Polling 41

where ˆfsi is the previous value offsi.

3.3.2.5 Fraction of Fair Share Determinator

The Fraction of Fair Share Determinator must first calculate the sharesi that slavei
has been given. The instantaneous shares′i is unity if the last poll was to slavei, and zero
otherwise. Sharesi is the determined by taking, after each poll, and with smoothing factor
αs, the exponential moving average of the instantaneous share, i.e.,

si = (1− αs)ŝi + αss
′
i, (3.36)

whereŝi is the previous value ofsi. Using sharesi and fair sharefsi, the Fraction of Fair
Share is defined as

ffsi =
{ si

fsi
, if si < fsi,

1, otherwise.
(3.37)

3.3.2.6 Decision Maker

For each slavei a probabilityPdatai
of a Baseband packet being available for transmis-

sion to the master and a Fraction of Fair Shareffsi is applied to the Decision Maker. Based on
these inputs the Decision Maker decides which slave to poll next. It is clear that it is urgent to
poll a slave withPdata = 1 andffs = 0 while it is not needed to poll a slave withPdata = 0
andffs = 1. The decision to make in the area between these two extremes depends on the
policy.
We define a variableUi for each slavei. We name itpoll urgencyand define it as

Ui = (1− γU)Pdatai + γU(1− ffsi), 0 ≤ γU ≤ 1. (3.38)

Most of the time, making a poller extremely efficient (γU → 0) results in the poller being
not fair (compare with a Round Robin poller with exhaustive service discipline), while bas-
ing poll decisions only on the fairness (γU → 1) will lead to a poller that is not necessarily
efficient. As a result, both the probabilitiesPdatai

and the Fractions of Fair Shareffsi should
have impact on the polling decisions. Therefore, the tuning variableγU is introduced to tune
the impact of the probabilityPdatai and the Fraction of Fair Shareffsi on the poll urgency.
Furthermore, the Decision Maker selects the slavei with the highest poll urgency valueUi.

Polling each time slavei that has the highest probabilityPdatai
will lead to an efficient and

fair distribution of bandwidth among the slaves as long as there is at most one slavei with
Pdatai = 1 at each poll moment. If it is predicted that more than one slave definitely has
a Baseband packet available for transmission to the master then the fairness must also be
considered. On the other hand, considering only the fairness while making a decision will
lead to a polling scheme that is not necessarily efficient. As a result, the tuning variableγU

should be greater than zero and less than one.

42 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

3.3.3 Simplification of PFP

In Section 3.3.2, the inter-arrival time of packets was assumed to be exponentially dis-
tributed. However, in reality, packets often arrive in bursts. Consequently, the presence of
more baseband packets at a slave is likely if the last poll to that slave was successful.

The simplification of PFP that is proposed here concerns the simplification of the Data Avail-
ability Predictor in the sense that it assumes data being available at a particular slave after
each successful poll to that slave. If the last poll to a particular slave is unsuccessful, then
the time between that poll and the first arrival at that slave is assumed to be exponentially
distributed with mean 1

TDe
i
, whereTDe

i is the arrival rate determined by the Traffic Demand
Estimator as described in Section 3.3.2.2. The resulting probabilityPdatai

of data being
available at a slavei is then given by

Pdatai
=

 (1− e−TDe
iT), n = 1,

1, n > 1,
(3.39)

wheren − 1 is the number of polls to slavei since the last unsuccessful poll to that slave,
and whereT is the time duration since the last poll to that slave. As can be seen from (3.31)
and (3.39), the determination of the probability of data being available is simplified. We will
examine the influence of this simplification in Section 3.5.

3.3.4 Extension to PFP for duplex traffic handling

In order to make duplex traffic handling possible, two Slave Status Trackers are imple-
mented for each master-slave pair, one for traffic from master to slave and one for traffic from
slave to master. The major difference between the two slave status trackers is the Data Avail-
ability Predictor. In case of traffic from the master to the slaves, the poller knows whether
data is available for transmission to a slave or not. Thus, the probability is either zero or one.
The implementation of the other building blocks remains as described before. This includes
the Decision Maker which still selects the slave with the highest poll urgency level (with
respect to traffic from master to slave or traffic from slave to master) regardless of the poll
urgency level with respect to traffic in the opposite direction.

3.4 Analysis of stability, efficiency, and fairness

As opposed to the polling sequences of the Fair Exhaustive Poller and the Predictive Fair
Pollers, the polling sequence of the 1-limited Round Robin poller is independent of the traffic
load. Consequently, the stability, efficiency, and fairness based on fraction of fair share of
the 1-limited Round Robin poller can be obtained analytically. In this section we study the
stability, efficiency, and fairness based on fraction of fair share of the 1-limited Round Robin
poller taking the level of asymmetry of the load into account. In Section 3.5, we compare the
simulation results of the 1-limited Round Robin poller with the analytically obtained results.

ConsiderN slaves and a master forming a piconet, whilenh (0 < nh < N) slaves are

3.4. Analysis of stability, efficiency, and fairness 43

highly loaded and the other slaves are lowly loaded. The load of each slavei is produced by
a stochastic process that generates L2CAP packets with a rateλi, where

λ1..λN−nh
= λl ≥ 0, (3.40)

and

λN−nh+1..λN = λh, (3.41)

whereλh > 0 andλh ≥ λl.
Furthermore, consider each L2CAP packet needs for transmission an average number of data
slotsd, an average number of pollsp and average number of wasted slotsw (e.g., POLL
packets). If the number of available time slots per second (total slot rate) isCtdd then the
loadρ is defined as

ρ =
(
∑N

i=1 λi)d
Ctdd

=
((N − nh)λl + nhλh)d

Ctdd
. (3.42)

The level of asymmetry of the load in the piconet can be described with the coefficient of
variation of the arrival rates which is defined here as ([Jai91][MR99])

CV(λ) =
√

Var
µ

=

√∑N
i=1 λ2

i−
1
N (

∑N
i=1 λi)2

N−1

1
N

∑N
i=1 λi

. (3.43)

Substitutingλi from (3.40) and (3.41) in (3.43) gives

CV(λ) =
N
√

(N−nh)nh(λh−λl)2

N(N−1)

(N − nh)λl + nhλh
=

(λh − λl)
√

N(N−nh)nh

N−1

(N − nh)λl + nhλh
. (3.44)

Note that the maximum coefficient of variation of the arrival rates for whichλl is non-negative
is achieved whenλl = 0 and is given by

ĈV(λ) =

√
N(N − nh)
(N − 1)nh

, (3.45)

while the minimum coefficient of variation of the arrival rates is zero and is achieved when
λl = λh.

Because of the assumption on the arrival rates (λ1, ..., λN) each combination of the load and
the coefficient of variation of the arrival rates results in a unique combination ofλl andλh.
In other words, the arrival ratesλl andλh can be written as a function ofρ andCV(λ), i.e.,

λl =
Ctddρ

dN

(
1− CV(λ)

√
(N − 1)nh

N(N − nh)

)
, (3.46)

and

λh =
Ctddρ

dN

1 + CV(λ)

√
(N − 1)(N − nh)

Nnh

 . (3.47)

44 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

SubstitutingĈV(λ) from (3.45) in (3.46) and (3.47) gives

λl =
Ctddρ

dN

(
1− CV(λ)

ĈV(λ)

)
, (3.48)

and

λh =
Ctddρ

dN

(
1 +

CV(λ)
ĈV(λ)

N − nh

nh

)
. (3.49)

3.4.1 Stability of the 1-limited Round Robin poller

In order to study the stability of the the 1-limited Round Robin poller in Bluetooth we
follow an approach described in [Kue79]. For that, we model the system as a multi-queue
single-server system where:

• N queues are served by a single server in a cyclic manner with a 1-limited service
discipline

• Queues1, ..., (N −nh) are loaded each with a burst2 arrival rateλl ≥ 0. We call these
queues the lowly loaded queues.

• Queues(N − nh + 1), ..., N are loaded each with a burst arrival rateλh ≥ λl. We call
these queues the highly loaded queues.

• Each burst consists on average ofp baseband packets. This models the fact that each
L2CAP packet consists on average ofp baseband packets.

• The switchover timeui for queuei (also known as walking time or reply interval [Tak86])
is constant and equal to 2 time slots. Thus for each queuei

ui =
2

Ctdd
, (3.50)

whereCtdd is the total slot rate.

• As an L2CAP packet needs on averaged + w time slots to be serviced, each baseband
packet needs on averaged+w

p time slots to be serviced. However, the switchover time
already accounts for a part of the slots needed to serve a packet. Consequently, the
modeled average service timehi for a packet at queuei is

hi =
d+w

p

Ctdd
− ui =

d+w
p − 2

Ctdd
. (3.51)

• The random cycle time isTc with an average cycle timec = E[Tc]

• The average number of arriving baseband packets at queuei during a cycle is

mi = λipc. (3.52)

2Note that the burst is due to the fact that an L2CAP packet may comprise multiple baseband packets.

3.4. Analysis of stability, efficiency, and fairness 45

The system is said to be unstable if one or more queues are unstable. This is the case if either
the highly loaded queues exceed their stability boundary (i.e.,mh ≥ 1) or if the lowly loaded
queues (and thus all the queues) exceed their stability boundary (i.e.,ml ≥ 1 andmh ≥ 1).
On the other hand, the queues are stable if they operate below their stability boundary.

If the highly loaded queues operate near to their stability boundary (i.e.,mh → 1) then the
average cycle length will be

c∗h =
N∑

i=1

ui +
N−nh∑

i=1

λipc∗hhi +
N∑

i=N−nh+1

hi, (3.53)

=
2N

Ctdd
+ (N − nh)λlpc∗h

d+w
p − 2

Ctdd
+ nh

d+w
p − 2

Ctdd
. (3.54)

The first term of (3.53) accounts for the total switchover time during a cycle. Furthermore,
the lowly loaded queues are stable and thus, on average, the number of packets from a lowly
loaded queue that are served during a cycle equals the average number of packets that arrive
at that queue during a cycle. This is accounted for by the second term of (3.53). The highly
loaded queues operate near to their stability boundary and thus have a packet available for
transmission each cycle. This is accounted for by the last term of (3.53).
Extractingc∗h from (3.54) gives

c∗h =
2N + nh(d+w

p − 2)

Ctdd − (N − nh)λl(d + w − 2p)
. (3.55)

If the lowly loaded queues operate near to their stability boundary (i.e.,ml → 1) then the
highly loaded queues also operate near to their stability boundary (i.e.,mh → 1). The average
cycle length will then be

c∗l =
N∑

i=1

ui +
N∑

i=1

hi, (3.56)

=
2N

Ctdd
+ N

d+w
p − 2

Ctdd
, (3.57)

=
N

Ctdd
(
d + w

p
). (3.58)

Again, the first term of (3.56) accounts for the total switchover time. Furthermore, all the
slaves operate near to their stability boundary and thus have a packet available for transmis-
sion every time they are polled. This can be seen in the last term of (3.56).

The queues are served in a cyclic manner with a 1-limited service discipline, which means
that at most one packet is served from each queue during a cycle. Consequently, the system
is stable if at each queue, on average, at most one packet arrives during a cycle. This means
that the system is stable if both

ml = λlpc∗l < 1, (3.59)

and

46 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

mh = λhpc∗h < 1. (3.60)

Rewriting (3.59) and (3.60) respectively gives

λl <
Ctdd

N(d + w)
, (3.61)

and

λh <
Ctdd − (N − nh)λl(d + w − 2p)

nh(d + w) + 2(N − nh)p
. (3.62)

From (3.42) we know that:

λl =
Ctddρ− nhλhd

d(N − nh)
. (3.63)

Substitutingλl from (3.63) in (3.62) gives

λh <
Ctdd − d+w−2p

d
(Ctdd − nhλhd)

nh(d + w) + 2(N − nh)p
. (3.64)

Solving the inequality from (3.64) gives

λh <
Ctdd(d(1− ρ) + (2p− w)ρ)

2Ndp
, (3.65)

Substitutingλh from (3.65) in (3.63) gives

λl >
Ctdd(2Nρp− nh(d(1− ρ) + (2p− w)ρ))

2(N − nh)Ndp)
. (3.66)

The conditions from (3.65) and (3.66) can be rewritten as a condition for the coefficient of
variation of the arrival rates by substitutingλl andλh in (3.44), i.e.,

CV(λ) <

√
Nnh

(N − 1)(N − nh)
d + w

2p
(

d

ρ(d + w)
− 1). (3.67)

SubstitutingĈV(λ) from (3.45) in (3.67) we write

CV(λ) <
nh

N − nh
ĈV(λ)

d + w

2p

(
d

ρ(d + w)
− 1
)

. (3.68)

In the previous subsection it is mentioned that the minimum value for the coefficient of vari-
ation of the arrival rates is zero. As a result of (3.68) and becauseĈV(λ), ρ, d, w, p, nh, and
(N − nh) are non-negative, the following must also hold(

d

ρ(d + w)
− 1
)

> 0, (3.69)

and thus

ρ <
d

d + w
. (3.70)

3.4. Analysis of stability, efficiency, and fairness 47

In other words, the minimum load for which no polling mechanism can be stable is defined
as

ρ̂ =
d

d + w
. (3.71)

Note that this result can also be obtained by substitutingλl from (3.61) in (3.62) and ulti-
mately substitutingλl and the newλh in (3.42).

Summarizing, we state that the system is stable if both requirements from (3.70) and (3.68)
are met. Furthermore, asCV(λ) ≤ ĈV(λ), it can be seen that (3.68) is always met if

nh

N − nh

d + w

2p
(

d

ρ(d + w)
− 1) > 1, (3.72)

and thus if

ρ <
nhd

nh(d + w) + 2(N − nh)p
. (3.73)

3.4.2 Efficiency of the 1-limited Round Robin poller

We defined the efficiency in Section 3.1.2.1. Stating the definition differently, the ef-
ficiency is the ratio of the average service time3 per cycle to the average cycle time. With
respect to efficiency we distinguish four operation areas:

Operation area I

This operation area is defined as the operation area in which both the lowly loaded queues
and the highly loaded queues are stable. The system is then stable, and hence operation area
I is defined by (3.70) and (3.68).

The average cycle time in a stable system is

c =
N∑

i=1

ui +
N∑

i=1

(λipchi), (3.74)

=
2N

Ctdd
+ c

(N − nh)λlp

d+w
p − 2

Ctdd
+ nhλhp

d+w
p − 2

Ctdd

 . (3.75)

The first term of (3.74) accounts for the total switchover time during a cycle. Furthermore,
all the queues are stable and thus, on average, the number of packets from a queue that are
served during a cycle equals the average number of packets that arrive at that queue during a
cycle. This is accounted for by the second term of (3.74).

3Note that the real service time
d
p

Ctdd
is now considered instead of the modeled service time of (3.51).

48 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Extractingc from (3.75) gives

c =
2N

Ctdd − {(N − nh)λl + nhλh} (d + w − 2p)
. (3.76)

According to our definition, the efficiency is

η =
c {((N − nh)λlp + nhλhp)}

d
p

Ctdd

c
=

((N − nh)λl + nhλh)d
Ctdd

= ρ. (3.77)

This was expected because in a stable system all the packets are served.

Operation area II

This operation area is defined as the operation area in which only the highly loaded queues
are unstable, while

ρ < ρ̂. (3.78)

As λl ≤ λh, unstable lowly loaded queue imply that (see also (3.61))

λh ≥ λl ≥
Ctdd

N(d + w)
. (3.79)

Substitutingλl andλh from (3.79) in (3.42) will show that (3.78) will not hold if the lowly
loaded queues are unstable. Hence, whenever the system is unstable while (3.78) holds, it
means that the highly loaded queues are the only unstable queues. Consequently, operation
area II is defined by (3.78) and (see also (3.68))

CV(λ) ≥ nh

N − nh
ĈV(λ)

d + w

2p
(
ρ̂

ρ
− 1). (3.80)

If only the highly loaded slaves are unstable then the average cycle timec∗h is given by (3.55).
According to our definition the efficiency will be

η =
c∗h

{
(N − nh)λlp

d
p

Ctdd

}
+ nh

d
p

Ctdd

c∗h
. (3.81)

Substitutingc∗h from (3.55) in (3.81) gives

η =
nhd

nh(d + w) + 2(N − nh)p
+

2λlp
d

Ctdd
N(N − nh)

nh(d + w) + 2(N − nh)p
. (3.82)

Substitutingλl from (3.48) in (3.82) gives

η =
nhd

nh(d + w) + 2(N − nh)p
+

2pρ(N − nh)(1− CV(λ)

ĈV(λ)
)

nh(d + w) + 2(N − nh)p
. (3.83)

Note that the minimum efficiency in an unstable system served by a 1-limited Round Robin
poller is equal to the maximum load at which the system is stable regardless of the coefficient
of variation of the arrival rates (see (3.73) and the first term of (3.83)).

3.4. Analysis of stability, efficiency, and fairness 49

Operation area III

This operation area is defined as the operation area in which only the highly loaded queues
are unstable, and

ρ ≥ ρ̂. (3.84)

If the lowly loaded queues approach their stability boundary then the average cycle timec∗l is
given by (3.58). The lowly loaded queues are stable as long as

λlpc∗l < 1, (3.85)

thus as long as

λl <
Ctdd

N(d + w)
. (3.86)

From (3.42) we know that

λh =
Ctddρ− (N − nh)λld

dnh

, (3.87)

which implies that

λh >
Ctdd

{
Nρ(d + w)− (N − nh)d

}
Nnhd(d + w)

. (3.88)

The conditions from (3.86) and (3.88) can be rewritten as a condition for the coefficient of
variation of the arrival rates by substitutingλl andλh in (3.44), i.e.,

CV(λ) >

√
N(N − nh)
(N − 1)nh

(
1− d

ρ(d + w)

)
. (3.89)

SubstitutingĈV(λ) from (3.45) and̂ρ from (3.71) in (3.89) gives

CV(λ) > ĈV(λ)(1− ρ̂

ρ
). (3.90)

In other words, the second operation area in which only the highly loaded queues are unstable
(operation area III) is defined by (3.84) and (3.90).

In operation area III, only the highly loaded queues are unstable. Hence, the efficiency will
be the same as in operation area II (see (3.83)).

Operation area IV

This operation area is defined as the operation area in which both the lowly loaded queues
and the the highly loaded queues are unstable. According to the above, this is the case if

ρ ≥ ρ̂ and CV(λ) ≤ ĈV(λ)(1− ρ̂

ρ
). (3.91)

In that case the average cycle time is

50 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

c∗ =
N∑

i=1

ui +
N∑

i=1

hi, (3.92)

=
2N

Ctdd
+ N

d+w
p − 2

Ctdd
, (3.93)

=
N

Ctdd
(
d + w

p
). (3.94)

Hence, the efficiency will be given by

η =
N

d
p

Ctdd

c∗
. (3.95)

Substitutingc∗ from (3.94) in (3.95) gives

η =
d

d + w
= ρ̂. (3.96)

The above is summarized as

η =



ρ, Operation area I,

nhd

nh(d+w)+2(N−nh)p
+

2pρ(N−nh)(1−CV(λ)
ĈV(λ)

)

nh(d+w)+2(N−nh)p
, Operation area II and III,

ρ̂, Operation area IV,

(3.97)

while the operation areas are shown in Table 3.1. Note that operation area I is the operation
area in which a system served by a 1-limited Round Robin poller is stable. Queues served by
pollers that are able to handle traffic that is asymmetrically distributed among the slaves will
also be stable in operation area II.

3.4.3 Fairness of the 1-limited Round Robin poller

We investigate the fairness based on fraction of fair share for the 1-limited Round Robin
in the four operation areas listed in Table 3.1.

Operation area I and II

In these operation areas, the total load is less than the available resources. Consequently,
each user should be allocated an amount of resources proportional to its offered load. As the
number of polls per L2CAP packet isp, the fair share of resources for each lowly loaded
slave is given by

fs l = λlpk, (3.98)

3.4. Analysis of stability, efficiency, and fairness 51

Operation
area

Conditions

I CV(λ) < nh

n−nh
ĈV(λ)d+w

2p (ρ̂
ρ − 1)

II
ρ < ρ̂

CV(λ) ≥ nh

n−nh
ĈV(λ)d+w

2p (ρ̂
ρ − 1)

III CV(λ) > ĈV(λ)(1− ρ̂
ρ)

IV
ρ ≥ ρ̂

CV(λ) ≤ ĈV(λ)(1− ρ̂
ρ)

Table 3.1: Operation areas of the 1-limited Round Robin poller

while the fair share of resources for each highly loaded slave is given by

fsh = λhpk, (3.99)

wherek ≥ 1 is a constant that depends on the amount of excess resources. Substitutingλl

andλh from (3.48) and (3.49) in (3.98) and (3.99), respectively, gives

fs l =
Ctddρpk

dN
(1− CV(λ)

ĈV(λ)
), (3.100)

and

fsh =
Ctddρpk

dN
(1 +

CV(λ)
ĈV(λ)

N − nh

nh
). (3.101)

Let sharesi be the actual poll rate for each useri. As the 1-limited Round Robin poller
equally divides the available polls among the users, each user will get the same shares, i.e.,

si = s, ∀i. (3.102)

According to (3.4), the fractions of fair share of resources will be given by

ffs l =
sl

fs l

=
dNs

Ctddρpk

1

(1− CV(λ)

ĈV(λ)
)
, (3.103)

and

ffsh =
sh

fsh

=
dNs

Ctddρpk

1

(1 + CV(λ)

ĈV(λ)

N−nh

nh
)
. (3.104)

According to (3.3), the fairness based on fraction of fair share is given by

f(ffs) =

{
ĈV(λ) + CV(λ)(N

nh
− 2)

}2

{
ĈV(λ) + CV(λ)(N

nh
− 2)

}2

+ CV(λ)2(N
nh

− 1)
. (3.105)

52 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Given that the considered system is operating in operation area I or II, it can be seen from
(3.105) that the fairness based on fraction of fair share only depends on the number of users,
the number of highly loaded users, and on the coefficient of variation of the arrival rates. In
other words, and with respect to the considered system, the fairness based on fraction of fair
share is independent of the total load, as long as system is operating in operation area I or II.

Operation area III

In operation area III, the total load is higher than the load that can be handled by any polling
system. However, in this operation area, the load of the lowly loaded users is low such that
their fair share equals their required share, i.e.,

fs l =
Ctddρp

dN

(
1− CV(λ)

ĈV(λ)

)
. (3.106)

On the other hand, the load of the highly loaded users is high such that their required share
cannot be granted. Consequently, the fair share for the highly loaded users equals the re-
sources not allocated to the lowly loaded users divided by the number of highly loaded users,
i.e.,

fsh =
1
nh

{
Ctddρ̂p

d
− (N − nh)fs l

}
. (3.107)

Substitutingfs l from (3.106) in (3.107) results in

fsh =
Ctddρp

dN

{
N

nh

ρ̂

ρ
− N − nh

nh

(
1− CV(λ)

ĈV(λ)

)}
. (3.108)

As the 1-limited Round Robin poller equally divides the available polls among the users, each
user will get the same shares (see (3.102)). According to (3.4), the fractions of fair share of
resources will be given by

ffs l =
sl

fs l

=
dNs

Ctddρp

1

(1− CV(λ)

ĈV(λ)
)
, (3.109)

and

ffsh =
sh

fsh

=
dNs

Ctddρp

1
N
nh

ρ̂
ρ −

N−nh

nh
(1− CV(λ)

ĈV(λ)
)
. (3.110)

According to (3.3), the fairness based on fraction of fair share is then given by

f(ffs) =

{
ĈV(λ) + ξCV(λ)(N

nh
− 2)

}2

{
ĈV(λ) + ξCV(λ)(N

nh
− 2)

}2

+ (ξCV(λ))2(N
nh

− 1)
, (3.111)

where

ξ =
ρ

ρ̂
− ĈV(λ)

CV(λ)
(
ρ

ρ̂
− 1). (3.112)

3.5. Simulation studies 53

As opposed to the fairness based on fraction of fair share in operation area I and II, the
fairness in operation area III also depends on the ratio of the loadρ to the minimum load for
which no polling system can be stableρ̂.

Operation area IV

In this operation area, none of the required loads can be afforded. Consequently, all the users
should be allocated the same fair share, i.e.,

fs l = fsh =
Ctddρ̂p

dN
. (3.113)

As the 1-limited Round Robin poller equally divides the available polls among the users, each
user will get the same shares (see (3.102)). According to (3.4), the fractions of fair share of
resources will be given by

ffs l = ffsh =
sh

fsh
=

dNs

Ctddρ̂p
. (3.114)

According to (3.3), the fairness based on fraction of fair share is then given by

f(ffs) = 1. (3.115)

3.5 Simulation studies

We evaluate the Predictive Fair Poller (see Section 3.3), the Simplified Predictive Fair
Poller (see Section 3.3.3), the Fair Exhaustive Poller (see section 3.2.2), and the 1-limited
Round Robin poller (see Section 3.2.1) by means of simulations. The Predictive Fair Poller
uses (3.33) and (3.34) for the calculation ofPdata, whereas the Simplified Predictive Fair
Poller uses (3.39) for the same purpose. Through these simulations we show the shortcom-
ings of the 1-limited Round Robin poller and show that both the Fair Exhaustive Poller and
the Predictive Fair Pollers do not have these shortcomings. We compare the Predictive Fair
Poller with the 1-limited Round Robin poller because it is the most simple poller, and with
the Fair Exhaustive Poller because we believe that Fair Exhaustive Poller is the best alterna-
tive poller available.

We present simulation results of these pollers in three Best Effort traffic scenarios. In the first
scenario, fixed-size IP packets4 that fit in a single baseband are generated with exponential
inter-arrival times. In the second scenario, variable-size IP packets that may comprise mul-
tiple baseband packets are generated with exponential inter-arrival times. Finally, the third
simulation scenario is an FTP/TCP scenario in which the traffic is generated by FTP/TCP
sources.

The simulation tool we used is Network Simulator (ns2) [ns2] with CMU wireless exten-
sions [CMU99] based Bluetooth extensions [Nie00] from Ericsson Switchlab together with
our ns2 implementation of both the Fair Exhaustive Poller and the Predictive Fair Pollers.

4In this dissertation, it is assumed that the IP layer is situated directly on top of the L2CAP layer, and that each
IP packet is transported using one L2CAP packet

54 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

In Section 3.5.1, we will briefly describe the simulation model. In Section 3.5.2 we present
the simulation results of the Poisson scenario with fixed IP packet sizes. We present the sim-
ulation results of the Poisson scenario with variable IP packet sizes in Section 3.5.3. Finally,
we present the simulation results of the FTP/TCP scenario in Section 3.5.4

3.5.1 Description of the Simulation Model

Simulations are performed in three best effort scenarios. In all the scenarios, the network
setup of Figure 3.8 is used. In the first two scenarios, a Poisson process at each slave Si gen-
erates data (IP packets) that is destined for the master M, while the wired nodes W0..W7 are
not involved in these two scenarios. In the third scenario, that we call the FTP/TCP scenario,
a TCP connection is setup between each slave Si and wired node Wi, and FTP is used to
transports data from slave Si to wired node Wi.

Simulations are performed in scenarios in which there are lowly loaded slaves and highly
loaded slaves. In the first two scenarios this is achieved by setting the rate of the Poisson
processes at each slave. In the third scenario, this is achieved by choosing the right capacity
for each link Li.

For each of the simulated pollers, the maximum inter-poll time is set atTpoll = 0.2 sec. With
respect to the Fair Exhaustive Poller, a slave is moved to the list of inactive slaves after a sin-
gle unsuccessful poll. With respect to the Predictive Fair Pollers, the parameters of the traffic
demand estimator (see Section 3.3.2.2) areαtde = 0.05 andntde = 10. Furthermore, the
parameters of the fair share determinator (see Section 3.3.2.4) and the fraction of fair share
determinator (see Section 3.3.2.5) areαfs = αs = 0.01. Finally, the parameter of the decision
maker (see Section 3.3.2.6) isγU = 0.5. The aforementioned values are chosen based on the
results of initial test simulations.

Note that in this chapter, the simulations are performed in a perfect radio environment where
no transmission errors occur and where retransmissions are not needed. Furthermore, no
paging or inquiry procedures take place after the initial part of the simulations.

3.5.2 The Poisson scenario with fixed IP packet sizes

3.5.2.1 Purpose of the simulation

The purpose of simulating in this simulation scenario is to show that the 1-limited Round
Robin poller is not always able to handle traffic that is asymmetrically distributed among the
slaves. Furthermore, by means of this simulation, we investigate whether the Predictive Fair
Pollers perform at least as good as the Fair Exhaustive Poller.

By using fixed-size IP packets that fit in a single baseband packet, also the baseband packets
arrive with exponentially distributed inter-arrival times. The simplified Predictive Fair Poller
assumes that baseband packets arrive in bursts. This simulation shows the effect of this
assumption on the performance of the simplified Predictive Fair Poller.

3.5. Simulation studies 55

S1 W1

S2 W2

S3 W3

M W0S4 W4

S5 W5

S6 W6

S7 W7

L
o

w
ly

 l
o

a
d

e
d

 s
la

v
e

s
H

ig
h

ly
 l
o

a
d
e

d
s
la

v
e
s

Radio Link

L1

L2

L3

L4

L5

L7

L6

L0

Figure 3.8: Network setup for the simulations

3.5.2.2 Description of the simulation scenario

In this scenario we simulate under the following assumptions (see also Figure 3.8):

• Seven slaves (S1,...,S7) and a master (M) form a piconet, while two of the seven slaves
are highly loaded, i.e.,

N = 7 and nh = 2. (3.116)

• There is only upstream traffic, i.e., from the slaves to the master.

• The slaves generate IP packets according to Poisson processes with arrival ratesλ1, ..., λ7,
while

λ1 = λ2 = λ3 = λ4 = λ5 = λl ≥ 0, (3.117)

and
λ6 = λ7 = λh ≥ λl. (3.118)

• The available Bluetooth Baseband packet type is DH1 with a maximum payload size
of 27 bytes.

• Each IP packet fits in one DH1 baseband packet and needs one POLL packet. This
results in an average ofd = 1 data slot, an average ofp = 1 polls and an average of
w = 1 wasted time slots per IP packet.

• The number of slots per second available for transmission of data or for transmission
of a POLL or NULL packet is

Ctdd = 1600 slots/sec. (3.119)

• According to (3.42) the load of the piconet is given by

ρ =
(5λl + 2λh)d

Ctdd
=

(5λl + 2λh)
1600

, (3.120)

56 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

while according to (3.71) the minimum load for which no poller can be stable is given
by

ρ̂ =
1
2
. (3.121)

• According to (3.44) the coefficient of variation of the arrival rates is given by

CV(λ) =

√
35
3 (λh − λl)

5λl + 2λh
, (3.122)

while according to (3.45) the maximum coefficient of variation of the arrival rates is

ĈV(λ) =

√
35
12

. (3.123)

• According to (3.48) and (3.49) the arrival rates are given by

λl =
1600ρ

7
(1−

√
12
35

CV(λ)), (3.124)

and

λh =
1600ρ

7
(1 +

5
2

√
12
35

CV(λ)). (3.125)

The simulations are performed in a lowly loaded piconet (ρ = 0.1) and in a highly loaded
piconet (ρ = 0.45). We compare the 1-limited Round Robin poller (RR), the Fair Exhaustive
Poller (FEP), the Predictive Fair Poller (PFP), and the simplified Predictive Fair Poller (sim-
plified PFP) taking into account the efficiency (η), the total mean response time (MRT), the
fairness based on fraction of fair share (f(ffs)), and the fairness based on inverse fraction of
reference waiting time (f(ifrw)). These performance metrics are explained in Section 3.1.2

3.5.2.3 Expectations for the efficiency

According to Section 3.4.2, the efficiency of the Round Robin poller will be given by
(confer (3.97))

η =



ρ, Operation area I,

1
7 + 5

7ρ(1−
√

12
35CV(λ)), Operation area II and III,

1
2 , Operation area IV.

(3.126)

where the operation areas are shown in Table 3.2 (confer Table 3.1) and Figure 3.9. This
figure shows in which operation area the 1-limited Round Robin poller operates given a par-
ticular loadρ and coefficient of variation of the arrival ratesCV(λ). The system served by a
1-limited Round Robin poller is only stable in operation area I.
As can be seen in Figure 3.9 and as can be calculated using (3.73), the system served by the
1-limited Round Robin poller is stable regardless of the coefficient of variation of the arrival
rates (CV(λ)) if

3.5. Simulation studies 57

Operation
area

Conditions

I CV(λ) < 2
5

√
35
12 (1

2ρ − 1)

II
ρ < 1

2
CV(λ) ≥ 2

5

√
35
12 (1

2ρ − 1)

III CV(λ) ≥
√

35
12 (1− 1

2ρ)

IV
ρ ≥ 1

2
CV(λ) <

√
35
12 (1− 1

2ρ)

Table 3.2: Operation areas of the 1-limited Round Robin poller in the Poisson scenario with fixed IP
packet sizes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CV(λ)

ρ

Operation area I

Operation area II

Operation area III

Operation area IV

Figure 3.9: Operation areas of the 1-limited Round Robin poller in the Poisson scenario with fixed IP
packet sizes

ρ <
nhd

nh(d + w) + 2(N − nh)p
=

1
7
. (3.127)

As a result, the system served by the 1-limited Round Robin poller will be stable in the lowly
loaded piconet (ρ = 0.1) regardless of the coefficient of variation of the arrival rates (CV(λ)),
and a maximum efficiency ofη = ρ = 0.1 is expected to be achieved. However, in the highly
loaded piconet (ρ = 0.45), the system will be stable as long as (see also operation area I in
table 3.2)

58 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

CV(λ) <
2
5

√
35
12

(
1
2ρ

− 1
)

= 0.076. (3.128)

Table 3.3 shows the calculated values for the efficiency (η) as a function of the coefficient of
variation of the arrival rates (CV(λ)) in a highly loaded piconet (ρ = 0.45).

CV(λ) 0 0.2 0.4 0.6 0.8 1 1.2
η ρ 0.43 0.39 0.35 0.31 0.28 0.24
Capacity loss 0% 5.2% 13.6% 21.9% 30.3% 38.6% 47%

Table 3.3: Expected efficiency (η) of the 1-limited Round Robin Poller as function of CV(λ) in a
highly loaded piconet (ρ = 0.45)

Because the Fair Exhaustive Poller, the Predictive Fair Poller and the simplified Predictive
Fair Poller are assumed to be able of handling traffic that is asymmetrically distributed among
the slaves, we expect that these pollers will be stable as long as they operate in operation area
I or II, i.e., as long as

ρ < ρ̂ =
1
2
. (3.129)

As mentioned before, we simulate in a lowly loaded piconet (ρ = 0.1) and in highly loaded
piconet (ρ = 0.45). As (3.129) holds in both cases, the system operates in operation area I
or II in both cases. Consequently, we expect the Fair Exhaustive Poller, the Predictive Fair
Poller and the simplified Predictive Fair Poller to be stable in both cases. This implies that
they achieve the maximum efficiency ofη = ρ.

3.5.2.4 Expectations for the fairness

As the system operates in operation area I or II, the value of the fairness based on frac-
tion of fair share for the 1-limited Round Robin poller will be given by (3.105), and will be
independent of the total loadρ. Figure 3.10 shows the fairness based on fraction of fair share
as a function of the coefficient of variation of the arrival rates for the 1-limited Round Robin
poller. For instance, the solid line corresponds to the fairness in case the system operates in
operation area I or II. In the remaining cases, the fairness also depends on the total load.

The Fair Exhaustive Poller polls slaves that it assumes to be active. In a lowly loaded piconet,
the Fair Exhaustive Poller will most of the time assume slaves to be inactive. As a result, the
Fair Exhaustive Poller will often poll the slaves in a 1-limited Round Robin manner, leading
to a fairness that is near to the fairness achieved by the Round Robin poller. In a highly loaded
piconet, the Fair Exhaustive Poller can distinguish better between active slaves and inactive
slaves. As a result the Fair Exhaustive poller will most of the time poll the active slaves in a
Round Robin manner. In other words, the Fair Exhaustive Poller will equally divide most of
the bandwidth among the active slaves, while allocating less bandwidth to the inactive slaves.
Consequently, its fairness based on fraction of fair share will approach one.

3.5. Simulation studies 59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(λ)

f(f
fs

)

ρ≤ρ
ρ=1.5 ρ
ρ=2ρ

^

^
^

Figure 3.10: Fairness based on fraction of fair share as a function of the coefficient of variation of the
arrival rates for the 1-limited Round Robin poller

The Predictive Fair Poller and the simplified Predictive Fair Poller poll slaves proportional
to their fair share of resources. Hence, the expected fairness based on fraction of fair share
approaches one.

3.5.2.5 Simulation results

In this section we discuss the simulation results of the 1-limited Round Robin poller, the
Fair Exhaustive Poller, the Predictive Fair Poller, and the simplified Predictive Fair Poller in
a lowly loaded piconet (ρ = 0.1) and in a highly loaded piconet (ρ = 0.45).

Lowly loaded piconet (ρ = 0.1)
The four polling mechanisms perform equally well with respect to the efficiency (η) as func-
tion of the coefficient of variation of the arrival rate. They achieve the maximum efficiency
of η = ρ, which conforms the expectations.

Figure 3.115 shows the fairness based on fraction of fair share (f(ffs)) for the four polling
mechanisms in a lowly loaded piconet. The fairness based on fraction of fair share of the
1-limited Round Robin poller conforms the expectations drawn in Figure 3.10. It can be seen
that the fairness of the Fair Exhaustive Poller is approaching the fairness of the 1-limited
Round Robin poller. The reason for this is that, because of the low load, the Fair Exhaustive
Poller assumes the slaves most of the time to be inactive. Consequently, it polls all the slaves,
most of the time, in a 1-limited Round Robin manner. The Predictive Fair Pollers poll each
slave at a poll rate proportional to its fair share of resources. Hence, their fairness based on
fraction of fair share approaches one.

5In this chapter, the figures containing simulation results show the (two-sided) 95% confidence interval. However,
as the simulation times are long, the confidence intervals are often very small.

60 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Figure 3.12 shows the total mean response time (MRT) for the four polling mechanisms in
a lowly loaded piconet. The total mean response timeMRT of the 1-limited Round Robin
poller is increasing for higher coefficient of variation of the arrival rates(CV(λ)). The rea-
son for this is that the arrival rates at the highly loaded slaves increase for increasingCV(λ),
while the poll rate to the slaves remains unchanged (similar to increasing utilization in a
queueing system). Consequently, the mean response time at the highly loaded slaves in-
creases for increasing(CV(λ)). On the other hand, the mean response time of the lowly
loaded slaves decreases for increasing values ofCV(λ). However, a decrease of the load of
the lowly loaded slaves means aN−nh

nh
= 5

2 times higher increase of the load at the highly
loaded slaves. Furthermore, the higher the value ofCV(λ), the relatively higher the number
of packets from the highly loaded slave. This explains the increasing total mean response
time, in case of the 1-limited Round Robin poller, for increasing values ofCV(λ). The Fair
Exhaustive Poller, the Predictive Fair Poller, and the simplified Predictive Fair Poller adapt
their poll rate to the load. Hence, they achieve a total mean response time that is lower than
the one achieved by the 1-limited Round Robin poller.

Figure 3.13 shows the fairness based on inverse fraction of reference mean waiting time for
the four polling mechanisms in a lowly loaded piconet. According to (3.6) and (3.7), and
given the simulation description, the reference mean waiting time for a slavei is

WRi =
1
fsi

λi

fsi

2(1− λi

fsi
)
, (3.130)

wherefsi is the fair share of resources that slavei should get. As the system operates in
operation area I or II, the fair shares of resourcesfsi will be proportional to the arrival rates
λi. Given the same total arrival rate, the termλi

fsi
will be constant and independent of the

coefficient of variation of the arrival rates. Consequently, the reference mean waiting time
of a slave will be inversely proportional to the fair share of that slave and thus to the arrival
rate to that slave. However, the 1-limited Round Robin poller polls the slaves independently
of their load. Hence, given a particular total load, the lower the load of a slave, the lower
its mean waiting time. On the other hand, the higher the load of a slave, the higher its mean
waiting time. As the reference mean waiting time of a slave is inversely proportional to the
load of that slave, this explains the decreasing fairness based on inverse fraction of reference
mean waiting time of the 1-limited Round Robin poller for increasing values ofCV(λ).

Because of the low load, the Fair Exhaustive Poller is most of the time polling the slaves in
a 1-limited Round Robin manner, which explains the low fairness based on inverse fraction
of reference mean waiting time for the Fair Exhaustive Poller. The Predictive Fair Poller and
the simplified Predictive Fair Poller poll each slave at a poll rate proportional to its fair share.
Given the same total load, a higher load of a slave leads to a higher fair share, and thus to
a higher poll rate. Consequently, the mean waiting time for each slave will increase for de-
creasing load and vice-versa. As the reference mean waiting time is inversely proportional to
the load, the fairness based on inverse fraction of reference waiting time will be higher than
for the 1-limited Round Robin poller and the Fair Exhaustive Poller.

3.5. Simulation studies 61

Highly loaded piconet (ρ = 0.45)
Figure 3.14 shows the efficiency for the four polling mechanisms in a highly loaded piconet.
As expected (see Table 3.3), the 1-limited Round Robin poller becomes inefficient for in-
creasing values ofCV(λ). The Fair Exhaustive Poller, the Predictive Fair Poller, and the
simplified Predictive Fair Poller adapt to the different loads, and hence achieve a maximum
efficiency ofη = ρ = 0.45.

Figure 3.15 shows the fairness based on fraction of fair share for the four polling mechanisms
in a highly loaded piconet. The fairness based on fraction of fair share of the 1-limited Round
Robin poller conforms the expectations drawn in Figure 3.10. It can be seen that the fairness
based on fraction of fair share of the Fair Exhaustive Poller is now approaching one. The rea-
son for this is that the Fair Exhaustive Poller can now distinguish between active nodes and
inactive nodes. Consequently, the Fair Exhaustive Poller does not have to poll all the slaves
in a Round Robin manner. As mentioned before, the Predictive Fair Poller and the simplified
Predictive Fair Poller poll each slave at a poll rate proportional to its fair share of resources.
Hence, their fairness based on fraction of fair share approaches one.

Figure 3.16 shows the total mean response time for the four polling mechanisms in a highly
loaded piconet. From (3.128) we know that the considered system served by a 1-limited
Round Robin polling mechanism becomes unstable ifCV(λ) ≥ 0.076. This can also be seen
in Figure 3.16. Furthermore, we see that the Predictive Fair Pollers achieve a response time
that is slightly lower than the one achieved by the Fair Exhaustive Poller. This is caused by
the fact that the Fair Exhaustive Poller checks data availability at inactive slaves after fixed
intervals, whereas the Predictive Fair Pollers check data availability at slaves depending on
their probability of having data available for transmission. The simplified Predictive Fair
Poller achieves a response time that is slightly lower than the one achieved by the Predictive
Fair Poller. The reason for this is that the simplified Predictive Fair Poller alway assumes
availability of data at a slave if the last poll to that slave was a successful poll. Consequently,
possibly available packets will experience a lower response time.

Figure 3.17 shows the fairness based on inverse fraction of reference waiting time for the four
polling mechanisms in a highly loaded piconet. When the considered system is served by a
1-limited Round Robin polling mechanism, the highly loaded slaves become unstable as soon
asCV(λ) ≥ 0.076. With respect to inverse fraction of reference waiting time, this means
that the 1-limited Round Robin polling mechanism then becomes unfair to two of the seven
slaves. Hence, a fairness based on inverse fraction of reference waiting time off(ifrw) ≈ 5

7
is achieved forCV(λ) ≥ 0.076.

The Fair Exhaustive Poller polls slaves that are assumed to be active. However, the resulting
poll rate is not necessarily proportional to the fair shares. As the load at the highly loaded
slaves becomes very high for increasingCV(λ), a slightly lower fraction of fair share re-
sults in a much higher waiting time. Hence, the resulting fairness based on inverse fraction
of reference waiting time will also become low for increasingCV(λ). The Predictive Fair
Poller and the simplified Predictive Fair Poller give each slave a poll rate proportional to their
fair share. Consequently, the mean waiting time for each slave will increase for decreasing
load and vice-versa. As the mean reference waiting time is inversely proportional to the load,
the fairness based on inverse fraction of reference waiting time will be higher than for the
1-limited Round Robin poller and the Fair Exhaustive Poller.

62 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

3.5.2.6 Conclusions of scenario I

The simulation results showed that the Round Robin poller is unable to handle traffic that
is asymmetrically distributed among the slaves. Furthermore, the results showed that both the
Predictive Fair Poller and the Simplified Predictive Fair Poller outperform both the 1-limited
Round Robin poller and the Fair Exhaustive Poller. Finally, the simulation results showed
that the Predictive Fair Poller and the simplified Predictive Fair Poller achieve a comparable
performance, which justifies the simplifications made in Section 3.3.3.

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(λ)

f(f
fs

)

RR
FEP
PFP
simplified PFP

Figure 3.11: Fairness based on fraction of fair share (f(ffs)) in a lowly loaded piconet (ρ = 0.1)

3.5. Simulation studies 63

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

10

CV(λ)

M
R

T
(m

s)

RR
FEP
PFP
simplified PFP

Figure 3.12: Mean response time (MRT) in a lowly loaded piconet (ρ = 0.1)

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(λ)

f(i
fr

w
)

RR
FEP
PFP
simplified PFP

Figure 3.13: Fairness based on inverse fraction of reference mean waiting time (f(ifrw)) in a lowly
loaded piconet (ρ = 0.1)

64 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

CV(λ)

η

RR
FEP
PFP
simplified PFP

Figure 3.14: Efficiency (η) in a highly loaded piconet (ρ = 0.45)

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(λ)

f(f
fs

)

RR
FEP
PFP
simplified PFP

Figure 3.15: Fairness based on fraction of fair share (f(ffs)) in a highly loaded piconet (ρ = 0.45)

3.5. Simulation studies 65

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

CV(λ)

M
R

T
(m

s)

RR
FEP
PFP
simplified PFP

Figure 3.16: Mean response time (MRT) in a highly loaded piconet (ρ = 0.45)

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(λ)

f(i
fr

w
)

RR
FEP
PFP
simplified PFP

Figure 3.17: Fairness based on inverse fraction of reference mean waiting time (f(ifrw)) in a highly
loaded piconet (ρ = 0.45)

66 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

3.5.3 The Poisson scenario with variable IP packet sizes

3.5.3.1 Purpose of the simulation

The purpose of simulating in this simulation scenario is to show that the 1-limited Round
Robin poller is not always able to handle bursty traffic that is asymmetrically distributed
among the slaves. Furthermore, by means of this simulation, we investigate whether the Pre-
dictive Fair Pollers perform at least as good as the Fair Exhaustive Poller.

This scenario uses variable-size IP packets that arrive with exponentially distributed inter-
arrival times, and which may cover multiple baseband packets. Consequently, the baseband
packets arrive in small batches (between 1 and 5 baseband packets) with exponentially dis-
tributed inter-arrival times. By means of simulations, the performances of the Predictive Fair
Poller and the simplified Predictive Fair Poller are compared in case baseband packets arrive
in bursts.

3.5.3.2 Description of the simulation scenario

In this scenario we simulate under the following assumptions (see also Figure 3.8):

• Seven slaves (S1,...,S7) and a master (M) form a piconet, while two of the seven slaves
are highly loaded, i.e.,

N = 7 and nh = 2. (3.131)

• There is only upstream traffic, i.e., from the slaves to the master.

• The slaves generate IP packets according to Poisson processes with arrival ratesλ1, ..., λ7,
while

λ1 = λ2 = λ3 = λ4 = λ5 = λl ≥ 0, (3.132)

and
λ6 = λ7 = λh ≥ λl. (3.133)

• The available Bluetooth baseband packet types are DH1, DH3 and DH5 with a maxi-
mum payload size of 27 bytes, 183 bytes and 339 bytes, respectively.

• The segmentation policy is such that packets are transmitted using baseband packets
that lead to the highest average slot efficiency (bytes per slot).

• The IP packet size distribution used is trimodal [EKW99] with30% of 40-byte IP pack-
ets,12% of 1500-byte IP packets and58% of IP packets with a size in the range of 300
to 600 bytes. Given the available baseband packet sizes and the followed segmentation
policy, this results in an average ofd = 8.30 data slots per IP packet and an average of
p = 1.99 polls per IP packet, while all the polls are explicit, i.e.,w = 1.99 wasted time
slots per IP packet.

• The number of slots per second available for transmission of data or for transmission
of a POLL or NULL packet is

Ctdd = 1600 slots/sec. (3.134)

3.5. Simulation studies 67

• According to (3.42), the load of the piconet is given by

ρ =
(5λl + 2λh)d

Ctdd
=

8.30(5λl + 2λh)
1600

, (3.135)

while, according to (3.71), the minimum load for which no poller can be stable is given
by

ρ̂ = 0.807. (3.136)

• According to (3.44), the coefficient of variation of the arrival rates is given by

CV(λ) =

√
35
3 (λh − λl)

5λl + 2λh
, (3.137)

while, according to (3.45), the maximum coefficient of variation of the arrival rates for
whichλl is non-negative is

ĈV(λ) =

√
35
12

. (3.138)

• According to (3.48) and (3.49) the arrival rates are given by

λl =
1600ρ

8.30 · 7
(1−

√
12
35

CV(λ)), (3.139)

and

λh =
1600ρ

8.30 · 7
(1 +

5
2

√
12
35

CV(λ)). (3.140)

The simulations are performed in a lowly loaded piconet (ρ = 0.1) and in a highly loaded
piconet (ρ = 0.7). We compare the 1-limited Round Robin poller (RR), the Fair Exhaustive
Poller (FEP), the Predictive Fair Poller (PFP), and the simplified Predictive Fair Poller (sim-
plified PFP) taking into account the efficiency (η), the total mean response time (MRT), and
the fairness based on fraction of fair share (f(ffs)). These performance metrics are explained
in Section 3.1.2

3.5.3.3 Expectations for the efficiency

According to Section 3.4.2, the efficiency of the 1-limited Round Robin poller will be
given by (cf. (3.97))

η =



ρ, Operation area I,

0.410 + 0.492ρ(1−
√

12
35CV(λ)), Operation area II and III,

0.807, Operation area IV.

(3.141)

where the operation areas are shown in Table 3.4 (confer Table 3.1) and Figure 3.18. The
system served by a 1-limited Round Robin poller is only stable in operation area I.

68 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Operation
area

Conditions

I CV(λ) < 2
5

√
35
122.585(0.807

ρ − 1)

II
ρ < 0.807

CV(λ) ≥ 2
5

√
35
122.585(0.807

ρ − 1)

III CV(λ) ≥
√

35
12 (1− 0.807

ρ)

IV
ρ ≥ 0.807

CV(λ) <
√

35
12 (1− 0.807

ρ)

Table 3.4: Operation areas of the 1-limited Round Robin poller in the Poisson scenario with variable IP
packet sizes

As can be seen in Figure 3.18 and be calculated using (3.73), the system served by the 1-
limited Round Robin poller is stable regardless of the coefficient of variation of the arrival
rates (CV(λ)) if

ρ <
nhd

nh(d + w) + 2(N − nh)p
= 0.410. (3.142)

As a result, the system served by the 1-limited Round Robin poller will be stable in the lowly
loaded piconet (ρ = 0.1) regardless of the coefficient of variation of the arrival rates (CV(λ)),
and a maximum efficiency ofη = ρ = 0.1 is expected to be achieved. However, in the highly
loaded piconet (ρ = 0.7), the system will be stable as long as (see also operation area I in
table 3.4) the following inequality holds:

CV(λ) <
2
5

√
35
12

2.585
(

0.807
ρ

− 1
)

= 0.269. (3.143)

Table 3.5 shows the calculated values for the efficiency (η) as a function of the coefficient of
variation of the arrival rates (CV(λ)) in a highly loaded piconet (ρ = 0.7).

CV(λ) 0 0.2 0.4 0.6 0.8 1 1.2
η ρ ρ 0.67 0.63 0.59 0.55 0.51
Capacity loss 0% 0% 3.8% 9.5% 15.3% 21% 26.8%

Table 3.5: Expected efficiency (η) of the 1-limited Round Robin Poller as function of CV(λ) in a
highly loaded piconet (ρ = 0.7)

The Fair Exhaustive Poller, the Predictive Fair Poller, and the simplified Predictive Fair Poller
are assumed to be able of handling traffic that is asymmetrically distributed among the slaves.
It is expected that these pollers will be stable as long as they operate in operation area I or II,
i.e., as long as

ρ < ρ̂ =
d

d + w
= 0.807. (3.144)

3.5. Simulation studies 69

The simulations take place in a lowly loaded piconet (ρ = 0.1) and in a highly loaded piconet
(ρ = 0.7). As (3.144) holds in both cases, we expect the Fair Exhaustive Poller, the Predictive
Fair Poller, and the simplified Predictive Fair Poller to be stable in both cases. This implies
that they achieve the maximum efficiency ofη = ρ.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

CV(λ)

ρ

Operation area I

Operation area II

Operation area III

Operation area IV

Figure 3.18: Operation areas of the 1-limited Round Robin poller in the Poisson scenario with variable
IP packet sizes

3.5.3.4 Expectations for the fairness

The simulated system operates in operation area I and II. Consequently, the fairness based
on fraction of fair share for the 1-limited Round Robin poller will be given by (3.105), and
will be independent of the coefficient of variation of the arrival ratesCV(λ). Figure 3.10
shows the fairness based on fraction of fair share as a function of the coefficient of variation
of the arrival rates.

In this simulation scenario, the load consists of variable-size IP packets that may cover mul-
tiple (multi-slot) baseband packets. Consequently, a load equal to the load in the simulation
scenario of Section 3.5.2 leads to a much lower (≈4.17 times) required poll rate in this sce-
nario.

In the lowly loaded piconet, the loads will be low to such an extent that the Fair Exhaustive
Poller, most of the time, will assume the slaves being inactive. Hence, the Fair Exhaustive
Poller will poll the slaves in a 1-limited Round Robin manner, leading to a fairness based on
fraction of fair share comparable to that of the 1-limited Round Robin poller. In the highly
loaded piconet, the loads will be high enough to make the Fair Exhaustive Poller capable of
distinguishing between active nodes and inactive nodes. Consequently, the Fair Exhaustive
Poller will achieve a higher fairness in the highly loaded piconet.

70 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

The Predictive Fair Poller and the simplified Predictive Fair Poller poll slaves proportional
to their fair share of resources. Hence, the expected fairness based on fraction of fair share
approaches one.

3.5.3.5 Simulation results

In this section we discuss the simulation results of the 1-limited Round Robin poller, the
Fair Exhaustive Poller, the Predictive Fair Poller, and the simplified Predictive Fair Poller in
a lowly loaded piconet (ρ = 0.1) and in a highly loaded piconet (ρ = 0.7).

Lowly loaded piconet (ρ = 0.1)

The four polling mechanisms perform equally well with respect to the efficiency (η) as func-
tion of the coefficient of variation of the arrival rate. They achieve the maximum efficiency
of η = ρ, which conforms the expectation.

Figure 3.19 shows the fairness based on fraction of fair share for the four polling mecha-
nisms in a lowly loaded piconet. The fairness based on fraction of fair share of the 1-limited
Round Robin poller conforms the expectations drawn in Figure 3.10. It can be seen that the
fairness of the Fair Exhaustive Poller is almost equal to the fairness of the 1-limited Round
Robin poller, which conforms the expectations. The Predictive Fair Poller and the simplified
Predictive Fair Poller achieve a fairness based on fraction of fair share that approaches unity,
except whenCV(λ) > 1. The reason for this is that the required poll rate of the lowly loaded
slaves is then low to such an extent that it is hard to properly estimate the required poll rates.

Figure 3.20 shows the total mean response time for the four polling mechanisms in a lowly
loaded piconet. The total mean response timeMRT of the 1-limited Round Robin poller
is slightly increasing for higher coefficient of variation of the arrival rates(CV(λ)). The
reason for this is the same as in the first simulation scenario. The Fair Exhaustive Poller,
the Predictive Fair Poller, and the simplified Predictive Fair Poller adapt their poll rate to the
load. Hence, they achieve a total mean response time that is lower than the one achieved by
the 1-limited Round Robin poller. Furthermore, it can be seen that, even when the slaves are
equally loaded, the response time achieved by these pollers is lower than the response time
achieved by the 1-limited Round Robin poller. With respect to the Fair Exhaustive Poller, the
reason for this is that whenever a first segment (baseband packet) of an IP packet is received
from a slave, that slave will be active until a NULL packet is received. Since there is a high
probability that no other slave is active at the same moment, no other slave will be polled
before the transmission of the IP packet is completed. With respect to the Predictive Fair
Poller, the reason for this low delay is the fact that this poller takes into account whether con-
tinuations are pending. With respect to the simplified Predictive Fair Poller, this low delay is
caused by the fact that this poller keeps assuming availability of data at a slave until a NULL
packet is received.

3.5. Simulation studies 71

Highly loaded piconet (ρ = 0.7)
Figure 3.21 shows the efficiency for the four polling mechanisms in a highly loaded piconet.
As expected (see Table 3.5), the 1-limited Round Robin poller becomes inefficient for in-
creasing values ofCV(λ). The Fair Exhaustive Poller, the Predictive Fair Poller, and the
simplified Predictive Fair Poller adapt to the different loads, and hence achieve a maximum
efficiency ofη = ρ = 0.7.

Figure 3.22 shows the fairness based on fraction of fair share for the four polling mechanisms
in a highly loaded piconet. The fairness based on fraction of fair share of the 1-limited Round
Robin poller conforms the expectations drawn in Figure 3.10. With respect to the Fair Ex-
haustive Poller, and because of the higher total required poll rate, the list of active slaves will
be non-empty most of the time. Instead of polling all the slaves in a 1-limited Round Robin
manner, the Fair Exhaustive Poller now divides most of its resources between the slaves that
need to be polled. Consequently, the Fair Exhaustive Poller achieves a higher fairness based
on fraction of fair share than the 1-limited Round Robin poller. As mentioned before, the
Predictive Fair Poller and the simplified Predictive Fair Poller poll each slave at a poll rate
proportional to its fair share of resources. Hence, their fairness based on fraction of fair share
approaches one.

Figure 3.23 shows the total mean response time for the four polling mechanisms in a highly
loaded piconet. From (3.143) we know that the considered system served by a 1-limited
Round Robin polling mechanism becomes unstable ifCV(λ) ≥ 0.269. This can also be seen
in Figure 3.23. Furthermore, as the Fair Exhaustive Poller, the Predictive Fair Poller, and
the simplified Predictive Fair Poller adapt to the different traffic demands, they achieve lower
mean response times than the ones achieved by the 1-limited Round Robin poller, even if the
load is asymmetrically distributed among the slaves (i.e., ifCV(λ) = 0).

3.5.3.6 Conclusions of scenario II

As in scenario I, the simulation results showed that the Round Robin poller is unable to
handle traffic that is asymmetrically distributed among the slaves. Furthermore, the simu-
lation results showed that both the Predictive Fair Poller and the simplified Predictive Fair
Poller outperform both the 1-limited Round Robin poller and the Fair Exhaustive Poller.

As this scenario uses variable-size IP packets that may cover multiple baseband packets, the
baseband packets arrive in small batches (between 1 and 5 baseband packets) with exponen-
tially distributed inter-arrival times. The simplified Predictive Fair Poller always assumes the
availability of a baseband packet at a slave if its last poll to that slave was a successful poll.
The Predictive Fair Poller, however, does not assume batch arrivals of IP packets. Instead, it
detects whether continuation baseband packets are available at a slave or not.

Given the assumptions made by the Predictive Fair Poller and the simplified Predictive Fair
Poller, the Predictive Fair Poller is able to achieve a slightly better performance than the
simplified Predictive Fair Poller, which is shown by the simulation results.

72 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(λ)

f(f
fs

)

RR
FEP
PFP
simplified PFP

Figure 3.19: Fairness based on fraction of fair share (f(ffs)) in a lowly loaded piconet (ρ = 0.1)

0 0.2 0.4 0.6 0.8 1 1.2
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

CV(λ)

M
R

T
(m

s)

RR
FEP
PFP
simplified PFP

Figure 3.20: Mean response time (MRT) in a lowly loaded piconet (ρ = 0.1)

3.5. Simulation studies 73

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CV(λ)

η

RR
FEP
PFP
simplified PFP

Figure 3.21: Efficiency (η) in a highly loaded piconet (ρ = 0.7)

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(λ)

f(f
fs

)

RR
FEP
PFP
simplified PFP

Figure 3.22: Fairness based on fraction of fair share (f(ffs)) in a highly loaded piconet (ρ = 0.7)

74 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

0 0.2 0.4 0.6 0.8 1 1.2
0

25

50

75

100

125

150

175

200

225

250

CV(λ)

M
R

T
(m

s)

RR
FEP
PFP
simplified PFP

Figure 3.23: Mean response time (MRT) in a highly loaded piconet (ρ = 0.7)

3.5. Simulation studies 75

3.5.4 The FTP/TCP scenario

3.5.4.1 Purpose of the simulation

The purpose of this simulation scenario is to show, in a more realistic traffic load en-
vironment, that the 1-limited Round Robin poller is not always able to handle traffic that is
asymmetrically distributed among the slaves. Furthermore, by means of this simulation, we
investigate whether the Predictive Fair Pollers perform at least as good as the Fair Exhaustive
Poller.

This scenario uses MTU-sized IP packets that cover five baseband packets. The Predictive
Fair Poller is able to detect the availability of continuation baseband packets, whereas the
simplified Predictive Fair Poller always assumes the availability of continuation baseband
packets after a successful poll. By means of simulations, the performances of the Predictive
Fair Poller and the simplified Predictive Fair Poller are compared, in a more realistic traffic
load environment, in case baseband packets arrive in bursts.

3.5.4.2 Description of the simulation scenario

In this scenario we simulated under the following assumptions (see also Figure 3.8):

• Seven slaves (S1,...,S7) and a master (M) form a piconet, while the master is also
connected to a wired network, i.e., the master is acting as an accesspoint.

• Each slave Si continuously uploads data to wired node Wi through master M and wired
node W0 using FTP/TCP (BSD Tahoe), while capacityC0 of the wired duplex link L0
is much higher than the total capacity in a piconet.

• The available Bluetooth Baseband packet types are DH1, DH3, and DH5 with a maxi-
mum payload size of 27 bytes, 183 bytes and 339 bytes, respectively.

• The segmentation policy requires that the largest allowable baseband packet is used,
unless the remainder of the packet fits into a smaller baseband packet.

• The MTU size is 1500 bytes. Because of the available Bluetooth baseband packet types
and because of the segmentation policy, each IP packet covers four DH5 and one DH3
baseband packets.

• The capacities(C1, ..., C7) of the wired duplex links (L1,...,L7) obey

C1 = C2 = C3 = C4 = C5 = Cl, (3.145)

and
C6 = C7 = Ch ≥ Cl, (3.146)

while

Ctot =
7∑

i=1

Ci. (3.147)

76 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

• Because of the selection of the link capacities and the use of TCP, two of the seven
slaves will belong to the group of highly loaded slaves, i.e.,

N = 7 and nh = 2. (3.148)

• The coefficient of variation of the link capacities is defined as

CV(C) =

√∑7
i=1 C2

i −
1
7 (

∑7
i=1 Ci)2

6

1
7

∑7
i=1 Ci

, (3.149)

while the maximum coefficient of variation of the link capacities for which the capacity
Cl is non-negative is

ĈV(C) =

√
35
12

. (3.150)

Due to the assumption on the link capacities (C1, ..., C7), each combination of the coefficient
of variation of the link capacities and the sum of the link capacities (Ctot) gives a unique
solution for the link capacitiesC1, ..., C7, and thus makes it possible to useCV(C) andCtot

as input for the simulations.
Because of the different link capacities and the use of TCP, the slaves will generate data at
different rates. Hence, the poller must adapt to these different rates by polling some slaves
more often than other slaves in order to maximize the throughputT (total data upload rate)
while being fair. We will compare the Predictive Fair Poller, the Fair Exhaustive Poller, and
the Round Robin poller taking into account efficiency (η), fairness based on fraction of fair
share (f(ffs)), and throughput (T). ThroughputT is defined as the average number of bits
per second received by the master from the slaves.

3.5.4.3 Expectations for the efficiency

An approximation for the efficiency that can be achieved given a total capacity of the
wired lines (Ctot) and a coefficient of variation of the link capacities can be given making the
following assumptions:

• TCP tries to fully utilize the path between the wireless node and the wired node. As-
suming that the wired links L1,...,L7 are the bottlenecks, the TCP source at each slave
i tries to fully utilize wired link Li, hence generating TCP packets at approximately the
following rate

λi ≈
Ci

8 ·MTU
TCP packets/sec. (3.151)

• The TCP we use produces one acknowledgment packet (40 bytes) for each TCP packet
(MTU). Given the allowed Baseband packets types and the followed segmentation pol-
icy, the TCP packet will be transmitted using 4 DH5 Baseband packets and 1 DH3
Baseband packet, whereas the ACK packet is transmitted using one DH3 Baseband
packet. Consequently, each TCP packet generation at a slave needs the following num-
ber of data slots to be handled

d = 23 + 3 = 26 slots/TCP packet, (3.152)

3.5. Simulation studies 77

and the following number of polls (implicit and explicit)

p = 5 polls/TCP packet. (3.153)

• Although the ACK packet needs a DH3 packet to be transmitted, the actual transmis-
sion of this ACK packet lasts less than 3 time slots. We assume the remaining time until
expiry of the three slots reserved for that DH3 to be enough for the slave to handle the
incoming ACK and generate a new TCP packet. Hence, this DH3 data packet serves as
an implicit poll for the first DH5 packet belonging to the newly generated TCP packet.
As a result, only four explicit polls (POLL packets) per TCP packet are needed, i.e.,
four wasted slots per TCP packet

w = 4 slots/TCP packet. (3.154)

• Given the assumptions above, an approximation for the load in the piconet can be given
by

ρ ≈
(
∑N

i λi)d
Ctdd

=
(Ctot

8·MTU)d

Ctdd
=

13
15

Ctot

640000
, (3.155)

while the minimum load for which Bluetooth will always be a bottleneck is

ρ̂ =
d

d + w
=

13
15

. (3.156)

Substitutingρ from (3.155) andρ̂ from (3.156) in (3.97), the expected efficiency for the
1-limited Round Robin poller is given by

η =



13
15

Ctot

640000 , Operation area I,

26
55 + 13

33
Ctot

640000 (1−
√

12
35CV(C)), Operation area II and III,

13
15 , Operation area IV.

(3.157)

The operation areas are shown in Table 3.6 and Figure 3.24. Operation area I is the operation
area in which the Bluetooth part will not be a bottleneck.

According to (3.73) and (3.155), the Bluetooth part will not be the bottleneck if

Ctot <
15
13

640000
nhd

nh(d + w) + 2(N − nh)p
= 349091 bps. (3.158)

As a result, and given that the system is served by the 1-limited Round Robin poller, the
Bluetooth part will never be the bottleneck in the lowly loaded piconet (Ctot = 100000 bps).
However, in the highly loaded piconet (Ctot = 600000 bps), the Bluetooth part will not be
the bottleneck as long as

CV(C) <
6
5

√
35
12

(
640000
Ctot

− 1) = 0.137. (3.159)

Table 3.7 shows the calculated values for the efficiency (η) and the throughput (T) as a func-
tion of the coefficient of variation of the link capacities (CV(C)) in a highly loaded piconet
(Ctot = 600000 bps,ρ ≈ 0.8125).

78 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Operation
area

Conditions

I CV(C) < 6
5

√
35
12 (640000

Ctot
− 1)

II
Ctot < 640000

CV(C) ≥ 6
5

√
35
12 (640000

Ctot
− 1)

III CV(C) ≥
√

35
12 (1− 640000

Ctot
)

IV
Ctot ≥ 640000

CV(C) <
√

35
12 (1− 640000

Ctot
)

Table 3.6: Operation areas of the 1-limited Round Robin poller in the FTP/TCP scenario

CV(C) 0 0.2 0.4 0.6 0.8 1 1.2
η 0.8125 0.799 0.756 0.712 0.669 0.626 0.583
T (bps) 600k 590k 558k 526k 494k 462k 430k
Capacity loss 0% 1.7% 7% 12.3% 17.7% 23% 28.3%

Table 3.7: Expected efficiency (η) and throughput (T) of the 1-limited Round Robin Poller as function
of CV(C) in a highly loaded piconet (Ctot = 600000 bps, ρ ≈ 0.8125)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

8

9

10

11
x 10

5

CV(C)

C
to

t

Operation area I

Operation area II

Operation area III

Operation area IV

Figure 3.24: Operation areas of the 1-limited Round Robin poller in the FTP/TCP scenario

3.5.4.4 Expectations for the fairness

The simulated system operates in operation area I and II. Consequently, the fairness based
on the fraction of fair share for the 1-limited Round Robin poller will be given by (3.105),

3.5. Simulation studies 79

and will be independent of the total capacity of the linksCtot. Figure 3.10 shows the fairness
based on fraction of fair share as a function of the coefficient of variation of the arrival rates.
As we assume a linear relation between a link capacity and the resulting arrival rate, the same
figure can be interpreted as fairness based on fraction of fair share as a function of the coeffi-
cient of variation of the link capacities (CV(λ)) = CV(C))).

In this simulation scenario, the load consists of TCP packets with a packet size of 1500 bytes.
Because of the allowed baseband packet types and the followed segmentation policy, these
packets will be transmitted using four DH5 packets and one DH3 packet. Consequently, a
load equal to the load in the simulation scenario of Section 3.5.2, leads to a much lower (5.2
times) required poll rate in this scenario.

In the lowly loaded piconet, the loads will be low to such an extent that the Fair Exhaustive
Poller, most of the time, will assume the slaves being inactive. Hence, all the slaves will
be polled in a 1-limited Round Robin manner, leading to a fairness based on fraction of fair
share comparable to that of the 1-limited Round Robin poller. In the highly loaded piconet,
the load will be high enough to make the Fair Exhaustive Poller be able of distinguishing be-
tween active slaves and inactive slaves. Consequently, the Fair Exhaustive Poller will achieve
a higher fairness in the highly loaded piconet.

The Predictive Fair Poller and the simplified Predictive Fair Poller poll slaves such that their
resulting poll rate is proportional to their fair share of resources. Hence, the expected fairness
based on fraction of fair share approaches unity.

3.5.4.5 Simulation results

In this section we discuss the simulation results of the 1-limited Round Robin poller, the
Fair Exhaustive Poller, the Predictive Fair Poller, and the simplified Predictive Fair Poller in
a lowly loaded piconet (Ctot = 100000 bps, i.e.,ρ ≈ 0.135) and in a highly loaded piconet
(Ctot = 600000 bps, i.e.,ρ ≈ 0.8125).

Lowly loaded piconet (Ctot = 100000 bps)

The four pollers perform equally well with respect to the throughputT and efficiencyη as
function of the coefficient of variation of the link capacities (CV(C)), i.e., T → Ctot and
η = ρ.

Figure 3.25 shows the fairness based on fraction of fair share for the four polling mechanisms
in a lowly loaded piconet. The fairness based on fraction of fair share of the 1-limited Round
Robin poller conforms the expectations drawn in Figure 3.10. It can be seen that the fairness
of the Fair Exhaustive Poller is almost equal to the fairness of the 1-limited Round Robin
poller, which also conforms the expectations. The Predictive Fair Poller and the simplified
Predictive Fair Poller achieve the maximum fairness based on fraction of fair share.

80 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

Highly loaded piconet (Ctot = 600000 bps)
Figure 3.26 and Figure 3.27 show the throughput and efficiency in a highly loaded piconet,
respectively. It can be seen that the 1-limited Round Robin poller cannot handle the load as it
becomes asymmetrically distributed among the slaves. The Fair Exhaustive Poller, Predictive
Fair Poller and simplified Predictive Fair Poller achieve a maximum throughput and thus a
maximum efficiency, i.e.,T → Ctot andη = ρ, respectively.

Figure 3.28 shows the fairness based on fraction of fair share for the four polling mecha-
nisms in a highly loaded piconet. The fairness based on fraction of fair share of the 1-limited
Round Robin poller conforms the expectations drawn in Figure 3.10. With respect to the Fair
Exhaustive Poller, and because of the higher total required poll rate, the list of active slaves
will be non-empty most of the time. Consequently, the Fair Exhaustive Poller, most of the
time, will poll slaves that need to be polled. Hence, the Fair Exhaustive Poller now achieves
a higher fairness based on fraction of fair share. The Predictive Fair Poller and the simplified
Predictive Fair Poller achieve a fairness that approaches the maximum fairness.

3.5.4.6 Conclusions of scenario III

As in scenario I and II, the simulation results showed that the 1-limited Round Robin
poller is not always able to handle traffic that is asymmetrically distributed among the slaves.
Furthermore, the simulation results showed that both the Predictive Fair Poller and the sim-
plified Predictive Fair Poller outperform both the 1-limited Round Robin poller and the Fair
Exhaustive Poller.

In this scenario, a more realistic traffic load is offered in the piconet. The used IP packets
cover five baseband packets, resulting in batch arrivals of baseband packets. The simplified
Predictive Fair Poller alway assumes the availability of a baseband packet at a slave if its last
poll to that slave was a successful poll. The Predictive Fair Poller, however, does not assume
batch arrivals of IP packets. Instead, it detects whether continuation baseband packets are
available at a slave or not. Given the assumptions made by the Predictive Fair Poller and the
simplified Predictive Fair Poller, the Predictive Fair Poller is able to achieve slightly better
performance than the simplified Predictive Fair Poller, which is shown by the simulation
results.

3.5. Simulation studies 81

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(C)

f(f
fs

)

RR
FEP
PFP
simplified PFP

Figure 3.25: Fairness based on fraction of fair share (f(ffs)) in a lowly loaded piconet (Ctot = 100000
bps)

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

x 10
5

CV(C)

T(
bp

s)

RR
FEP
PFP
simplified PFP

Figure 3.26: Throughput (T) in a highly loaded piconet (Ctot = 600000 bps)

82 Chapter 3. Scheduling Best Effort Traffic in Bluetooth

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CV(C)

η

RR
FEP
PFP
simplified PFP

Figure 3.27: Efficiency (η) in a highly loaded piconet (Ctot = 600000 bps)

0 0.2 0.4 0.6 0.8 1 1.2
0.7

0.75

0.8

0.85

0.9

0.95

1

CV(C)

f(f
fs

)

RR
FEP
PFP
simplified PFP

Figure 3.28: Fairness based on fraction of fair share (f(ffs)) in a highly loaded piconet (Ctot = 600000
bps)

3.6. Discussion 83

3.6 Discussion

Bluetooth polling strongly determines the efficiency (and thus throughput) and fairness,
especially in a highly loaded piconet with loads that are asymmetrically distributed among
the slaves.

In the literature, polling mechanisms can be found that are able to handle loads that are asym-
metrically distributed among the slaves. This is the main requirement in a best effort traffic
environment in order to efficiently handle the traffic. However, the mentioned polling mech-
anism have no means for extension to QoS traffic handling.

We developed a polling mechanism, named Predictive Fair Poller, that is able to handle traffic
that is asymmetrically distributed among the slaves, while being extendable with QoS capa-
bilities. For that, the Predictive Fair Poller takes both efficiency and fairness into account.

Through simulations we compared the Predictive Fair Pollers with the 1-limited Round Robin
poller and the Fair Exhaustive poller in two Poisson scenarios and in an FTP/TCP scenario.
Simulation results pointed out that the Predictive Fair Pollers outperform the 1-limited Round
Robin poller with respect to all studied performance metrics and that they perform at least as
good as and sometimes better than the Fair Exhaustive Poller. Furthermore, the simulation
results showed that the impact on the performance of simplifying the Predictive Fair Poller is
negligible, which justifies the simplification.

In this chapter, we have explained the operation of the Predictive Fair Poller, and we have
analyzed its essentials with respect to Best Effort traffic. In the next chapters we define the
QoS capabilities of the Predictive Fair Poller in more detail, and analyze its performance
behavior in a QoS environment. Furthermore, we will evaluate the Predictive Fair Poller in a
non-ideal radio environment and come up with improvements where needed.

Chapter 4

QoS in Bluetooth: an ideal radio environment

The previous chapter discussed the development of a Bluetooth polling mechanism that is
able to poll slaves in a fair and efficient manner. This chapter discusses the development of
a Bluetooth polling mechanism that provides QoS in an efficient manner. As opposed to the
next chapter, we restrict ourself to an ideal radio environment where no transmission errors
occur. The chapter is structured as follows. Section 4.1 presents the problem description.
Section 4.2 describes the design of Guaranteed Service support for Bluetooth. Section 4.3
evaluates the proposed scheduling mechanisms, and Section 4.4 concludes this chapter.

4.1 Problem description

Bluetooth is a wireless access technology that was initially developed as a replacement
for cables. However, Bluetooth has evolved to a wireless technology that can be used in new
areas not envisaged before. We believe that audio and video will be involved in these new
areas, and that applications dealing with audio and video will become available. Applications
that deal with audio and video require a network that causes small packet delays or at least
bounded packet delays. In order for Bluetooth to be useful to such applications, it must en-
sure that packet delays are low or at least bounded.

Bluetooth uses a polling mechanism to divide bandwidth among the participants. Together
with error recovery, paging, and inquiry this polling scheme is highly determining with re-
spect to the packet delay. Bluetooth Polling mechanisms capable of providing QoS have been
studied in [ZCKD02, CH02, CSS01, LT02], and [MMG03]. However, these polling mech-
anisms either do not provide delay and rate guarantees, or they lack an admission control
algorithm that would make sure the proposed mechanism can actually handle the QoS traffic.
Bluetooth can also use SCO channels to transport some types of traffic (e.g. CBR traffic) that
require delay bounds. However, SCO channels cannot transport large packets nor do they
have retransmission possibilities.

4.1.1 The Guaranteed Service approach

As mentioned in Chapter 2, the Guaranteed Service approach [SSG97] (GS) makes use
of the concept that packet delay in a network is a function of the arrival pattern of packets, the
packet sizes, and the way these packets are served throughout the network. It states that if a
flow is described using a token bucket [Par93] flow specification, and if each network element
in the GS path computes and exports parameters that describe the way it provides a requested
fluid model bandwidthR, then a delay bounddB can be computed given a requested fluid
model bandwidthR by

86 Chapter 4. QoS in Bluetooth: an ideal radio environment

dB =


b−M

R
rp−R
rp−rt + M+Ctot

R + Dtot, rt ≤ R < rp,

M+Ctot
R + Dtot, rt ≤ rp ≤ R,

(4.1)

whererp, rt, b, M , R, Ctot, andDtot are as defined in Section 2.2.1.1. If an application
specifies its traffic using a token bucket traffic specification, and if the network elements in
the GS path export their deviation from the fluid model, then, provided thatDtot < dB, a
fluid model service rateR can be requested such that a desired delay bounddB is achieved.

4.1.2 Problem statement

The main problem addressed in this chapter, is the provisioning of QoS in Bluetooth in
case of an ideal radio environment, where transmission errors do not occur. As Guaranteed
Service guarantees a delay bound by providing a rate guarantee, the design of Guaranteed
Service support for Bluetooth comprises the design of rate guarantees support for Bluetooth.
These two types of guarantees are the main QoS types that are needed for audio and video
applications.

The provisioning of Guaranteed Service in a network requires the source to provide a traffic
specification and a desired delay bound, and it requires the receiver to calculate the proper
bandwidth request. Furthermore, it requires the network elements in the GS path to compute
and export their deviation from the fluid model, and it requires a mechanism (not necessarily
RSVP) that transports all specifications and requests as well as the exported values, between
the source, the destination, and the intermediate network elements. Note that a mechanism
has been specified for the Bluetooth link, in the so-called Bluetooth logical link control and
adaptation protocol (L2CAP), that can be used for exchanging traffic specifications and delay
requirements. Finally, the provisioning of Guaranteed Service in a network requires the net-
work elements to perform admission control, and to schedule the Guaranteed Service traffic
as promised, i.e., to provide the requested rate, which leads to the requested delay guarantee.

Guaranteed Service is designed such that it can be used in a single-hop connection or in a
fixed-route multi-hop connection, as long as each hop can perform the functions mentioned
above. Consequently, the Guaranteed Service support to be designed and the accompanying
guaranteed rate support can be used in any Bluetooth usage scenario, as long as scatternets
are avoided. Note that Guaranteed Service does not scale in networks with large numbers of
flows. As the numbers of flows within a Bluetooth piconet is low, the scalability problem of
Guaranteed Service is avoided.

In this chapter, we design Guaranteed Service support for Bluetooth. More specifically, we
focus on the determination of theC andD error terms, on the admission control, and on the
scheduling of the Guaranteed Service traffic. As theC andD error terms and the admission
control are directly related to the polling mechanism (i.e., scheduling mechanism), they are
studied in the context of a polling mechanism.

In this chapter, we restrict ourselves to an ideal radio environment where no transmission

4.1. Problem description 87

errors occur and where retransmissions are not needed. We assume that no inquiry or paging
procedures take place and thus that all the time slots are available for data transmission.
Furthermore, we assume the availability of logical channels where a poll for a QoS (e.g.
Guaranteed Service) flow cannot result in BE data to be transmitted, and where BE traffic
and QoS traffic are queued separately to prevent BE traffic from interfering with QoS traffic
within a node.

4.1.3 Related work

Zhu et. al. [ZCKD02] proposed a polling mechanism, which they named Adaptive Power-
Conserving service discipline for Bluetooth (APCB). In this mechanism, the idea of the Vir-
tual Clock service model [Zha91] is adopted and the master allocates bandwidth to flows
based on their rate specification. Furthermore, APCB uses the hold mode to reduce the power
consumptions of less active slaves. The authors present, for theN -th packet in a queue, and
as function ofN , a bound on the departure time of that packet. However, no bound is pre-
sented the number of packets in a queue. The Virtual Clock part of APCB is similar to an
earlier work of Ruijs [Rui01], where each slave is associated with a counter that is updated
taking the load into account. Furthermore, the counters are decreased by one every two time
slots, and a slave is polled as soon as its associated counter reaches zero.

Chen and Hou [CH02] proposed a polling mechanism that provides temporal QoS in Blue-
tooth networks. The traffic of each flowi is described by the tuple (ci,di), whereci is the
maximum amount of messages (in slots) that can arrive in any time intervaldi, and wheredi

is also the relative deadline for a message. The latter means that a message of flowi arriving
at timet must be transmitted by timet + di. Provided that the flows conform their specifica-
tion, the polling mechanism tries to meet the relative deadlines as much as possible.

Chawla et. al. [CSS01] proposed a polling scheme, which they named latency-based schedul-
ing. In this scheme, they define the QoS request of a flowi in the form of a maximum
scheduling delay that each packet of that flow can tolerate. Based on this delay, which they
termed as latency of the connection, a relative deadlinedi is defined for each packet belong-
ing to that flowi. Furthermore, the polling scheme applies the Earliest Due Deadline scheme.
The authors, however, did not present an admission control algorithm that would make sure
the requested latency of the connection can actually be met.

Lapeyrie and Turletti [LT02] proposed a polling mechanism, which they named Fair and ef-
ficient Polling algorithm with QoS support (FPQ). This pollers aims at supporting both delay
and bandwidth guarantees, while remaining fair and efficient in case the load is asymmetri-
cally distributed among the slaves. Similar to the Predictive Fair Poller, FPQ determines the
probability of data being available for a slave. Furthermore, it keeps track, for each slave, of
the number of slots since the last poll. Based on these two aspects it decides which slave to
poll next. In FPQ, the flows specify their traffic using the average interval between packets
and the number of slots required by the transmission of packets. In order to support, for flow
i, a maximum delay request of, for instance,dmaxi , FPQ tries to make sure that the queue of
flow i is emptied at least once everydmaxi

time-units. However, as the flows do not specify
the minimum interval between packets, it can not be guaranteed that requested maximum
delay can actually be met.

88 Chapter 4. QoS in Bluetooth: an ideal radio environment

time

non-GS segment

si,j,1 2() si,j,2 2()

GS segment

planned poll

deadline of planned poll

p Þi

ui ui

d Þi
p Þi

d Þid Þid Þi
p Þip Þi

t0 t1

actual poll

Figure 4.1: Planning polls with a fixed time interval.

Recently, Mercier et. al. [MMG03] proposed a service differentiating polling mechanism,
which they name Class-Based EDF scheduling (CB-EDF). This mechanism aims at achieving
good service differentiation by taking into account two QoS parameters, i.e., the importance
of a message, and its relative delivery deadline. CB-EDF applies class-based priority queue-
ing between classes and EDF (Earliest Deadline First) within a class, where a class contains
all messages of the same importance degree. The CB-EDF is a service differentiating polling
mechanism and provides no delay or rate guarantees.

In this work, we follow the IETF’s Guaranteed Service approach, hence providing both a rate
guarantee and a delay guarantee. Furthermore, we present an admission control required to
ensure that the guarantees can actually be provided. To the author’s knowledge, no other
work has been reported on this approach.

4.2 Design of QoS support for Bluetooth

In Section 4.2.1, we introduce a polling mechanism that plans polls with a fixed interval
in between. In Section 4.2.1.1, we present the admission control routine needed to make sure
the fixed-interval poller can handle the GS flows as promised. In Section 4.2.1.2 and Sec-
tion 4.2.1.3, we presents the determination of the parameters of the fixed-interval poller, and
in Section 4.2.1.4 we present the translation of these parameters into theC andD error terms.

In Section 4.2.2, we show the shortcomings of the fixed-interval poller and introduce a
variable-interval poller, which is an improved version of the fixed-interval poller. Finally,
we present an improvement of the admission control in Section 4.2.3.

4.2. Design of QoS support for Bluetooth 89

4.2.1 Fixed-interval polling

Given the requested bandwidth (Ri) and the token bucket specification (rt
i , bi, rp

i , mi,
Mi) of a GS flowi, the poll rate that must be supported can be computed. An obvious way
to poll at a given poll rate is to calculate the average inter-poll time that results in the given
poll rate, and to plan polls with a time spacingp̃i (poll period) equal to the calculated average
inter-poll time. Each planned poll must complete execution within a relative deadlined̃i from
its planned time.

Figure 4.1 shows an example of fixed-interval polling, where polls for GS flowi are planned
with a fixed interval̃pi. Furthermore, each planned poll must be completely executed within
a relative deadlinẽdi from its planned time. For instance, the poll planned fort1 results in a
GS segment(i, j, 1(2)) to be completely transmitted before beforet1 + d̃i. In Figure 4.1,
si,j,k(li,j) is the transmission time (duration of both upstream and downstream baseband
packet) of thek-th segment out ofli,j segments of thej-th packet that belongs to flowi.
Furthermore,ui is the transmission time following an unsuccessful poll for flowi, where an
unsuccessful poll for flowi is a poll, for the node associated with flowi, that did not result
in data belonging to flowi. The time at which a poll takes place corresponds to the time at
which a master-to-slave transmission starts. In Bluetooth, the slave starts its transmission at
least one time slot (0.625 ms) after the master started its transmission, dependent on whether
the master transmitted one, three or five slots to the slave. Consequently, for that poll to re-
sults in data to be transmitted from the slave to the master, that slave does not necessarily has
to have its data available for transmission at the time the master starts its transmission to that
slave. However, we require in our study the data to be available at the time the master start its
transmission. For instance, in Figure 4.1, data that becomes available att+0 (= t0 + δ, where
δ ↓ 0) will not be served as a result of the poll att0, but has to wait for the next poll.

4.2.1.1 Admission Control

Each traffic specification (rt
i , bi, rp

i , mi, Mi) and corresponding requested fluid model
bandwidth (Ri) is ultimately converted to a poll period̃pi, a relative deadlinẽdi and a maxi-
mum segment sizesmax

i = maxj,k si,j,k(li,j). Consequently, a GS flowi can be looked at as
a periodic task. A periodic taskτi that corresponds to GS flowi is represented by the tuple
(pi, ei, di), where

• pi = p̃i is the fixed interval (period) between two consecutive instances of a taskτi

• ei = smax
i is the maximum execution time of an instance of taskτi

• di = d̃i is the relative deadline of each instance of taskτi

The size of the largest possible non-GS segment is given bysmax
BE . Hence, the size of the

largest possible segment in the piconet is given bysmax = max(smax
i , smax

BE), while the cor-
responding maximum execution time of any task instance (including non-real-time tasks) is
given byemax = smax.

The decision whether a set ofn GS flows can be accepted can be done by deciding whether
the corresponding task setτ = {τ1, τ2, . . . , τn} can be accepted (feasibility analysis). This
decision can only be made if the scheduling policy is also known. The Bluetooth polling

90 Chapter 4. QoS in Bluetooth: an ideal radio environment

mechanism can be modeled as a non-preemptive scheduling policy, which on its turn can be
divided into two classes: the class of idling non-preemptive scheduling policies and the class
of non-idling non-preemptive scheduling policies. The idling non-preemptive scheduling
policies are allowed to insert idle times even if there are task instances waiting for execution.
Inserting idle times makes it sometimes possible to schedule task sets that could otherwise
not be scheduled under the class of non-idling scheduling policies [GMR95].

As the feasibility analysis of an idling non-preemptive schedule is NP-hard in the strong
sense [HV95], we decided to use a non-idling non-preemptive scheduling policy. It is shown
in [KN80], [JSM91], and [GMR95] that non-idling non-preemptive Earliest Deadline First
(EDF) is optimal among the class of non-idling non-preemptive scheduling policies. This
means that if a feasible non-idling non-preemptive scheduling policy exists for a given task
set, then non-idling non-preemptive EDF will also be feasible for that task set.

Now that we have decided that the planned polls will be executed according to the non-idling
non-preemptive EDF scheduling policy, the admission control of a set ofn GS flows can be
translated to the feasibility analysis of the corresponding task setτ = {τ1, τ2, . . . , τn} under
the non-idling non-preemptive EDF scheduling policy.

Let us introduceprocessor utilizationU andprocessor demandh(t). Processor utilization
U is the fraction of processor time needed for the execution of task setτ [LL73]. Processor
demandh(t) is the amount of execution time requested by all instances whose release times
and absolute deadlines are in the interval[0, t] [BMR90][Spu96]. Zheng et al. stated in [ZS94]
that in the presence of non real-time tasks, a task setτ = {τ1, τ2, . . . , τn} is schedulable
under the non-idling non-preemptive EDF scheduling policy if and only if

1. Processor utilization condition

U =
n∑

i=1

ei

pi
≤ 1, and (4.2)

2. Processor demand condition

∀t ∈ S, h(t) =
∑

i:di≤t

(⌊
t− (di − pi)

pi

⌋)
ei + emax ≤ t, (4.3)

where

S =
n⋃

i=1

{
di + npi|n = 0, 1, . . . ,

⌊
tmax − di

pi

⌋}
, (4.4)

and

tmax = max
{

d1, . . . , dn,
emax +

∑n
i=1(1− di/pi)ei

1− U

}
. (4.5)

The first condition ensures that the scheduler can handle the traffic on the long term. The sec-
ond condition ensures that the deadlines can actually be met. This is done by ensuring that,
for time instancest that belong toS, the processor demandh(t) is not higher than the pro-
cessor timet. SetS denotes, for interval(0, tmax), the time instances at which the deadlines
occur. The idea behind the restriction to interval(0, tmax) is that if the processor demand
condition is met for the deadlines in the interval(0, tmax), that condition will also be met for

4.2. Design of QoS support for Bluetooth 91

deadlines outside that interval.

In the absence of non real-time tasks, the feasibility conditions mentioned above are sufficient
but not necessary. For the case in which there are no non real-time tasks, sufficient and
necessary conditions can be found in [KN80], [JSM91], [GRS96] and [JL99].

4.2.1.2 Determining poll period p̃i

The poll periodp̃i is determined considering the worst case response time a packet can
experience. In Figure 4.1, consider an empty packet queue att0, and consider packetj of
flow i, with a sizeLi,j (in bytes), which will be broken up intoli,j segments. If this packet
becomes available att+0 , then it will not be served during the poll att0, but it will be served
during the next poll, which is planned fort1. As a result, the worst case service time of a
packet isli,j p̃i+d̃i. In order to let the poll period̃pi be inversely proportional to the requested
fluid model bandwidthRi, the relative deadlinẽdi of a planned poll should be considered as
a deviation from the fluid model service time. The remaining part of the worst case service
time of a packet should then not be larger than the fluid model service time, i.e.,

li,j p̃i ≤
Li,j

Ri
, mi ≤ Li,j ≤ Mi, (4.6)

and thus

p̃i ≤
Li,j

li,j

Ri
, mi ≤ Li,j ≤ Mi. (4.7)

Let us introduce the poll efficiencyεpi,j , which is the average number of bytes per poll that is
associated with packetj of flow i. The poll efficiencyεpi,j is a result of the sizeLi,j of packet
j of flow i, the segmentation policy that is followed, and the set of baseband packet types that
is allowed to be used. The minimum poll efficiency of a flowi taken over all possible packet
sizes (i.e., formi ≤ Li,j ≤ Mi) is

εmin
pi

= min
mi≤Li,j≤Mi

Li,j

li,j
. (4.8)

Consequently, the maximum poll period that always satisfies (4.7) is

p̃i =
εmin
pi

Ri
. (4.9)

4.2.1.3 Determining relative deadline d̃i

As mentioned before, it has been decided to consider the relative deadlined̃i as the
deviation from the fluid model service time. In Guaranteed Service, the deviation from the

92 Chapter 4. QoS in Bluetooth: an ideal radio environment

fluid model is expressed in terms of a rate-dependent deviation (C error term) and a rate-
independent deviation (D error term). Hence, relative deadlinẽdi should consist of a rate-
dependent part and a rate-independent part, i.e.,

d̃i = αip̃i + βi, (4.10)

whereαi andβi are fixed for flowi, and wherẽpi is inversely proportional to service rate
Ri (cf. (4.9)). Whilesmax is the size of the largest possible segment in the piconet, we show
in step 1 that choosingαi ≥ 1 andβi ≥ smax for each GS flowi simplifies the admis-
sion control (feasibility analysis) as, in that case, the processor utilization condition becomes
a necessary and sufficient condition. In step 2, we introduce the individual processor uti-
lization Ũi and the upper bound on the individual processor demandh̃B

i (t). In step 3, we
determine the derivatives of̃Ui and h̃B

i (t) with respect toαi andβi in the two operational
areas of a GS flowi. Based on these derivatives, we present some observations in step 4.
Based on these observations, we show in step 5 that increasingαi andβi beyondαi = 1 and
βi = smax possibly decreases, but certainly does not increase the number of flows that can
be accepted. Furthermore, we show that, with respect to the feasibility of a set of GS flows
that flow i will be part of, the effect of decreasingαi andβi belowαi = 1 andβi = smax

cannot be determined a priori.

Step 1
Consider a set ofn GS flows whereαi ≥ 1 andβi ≥ smax for each GS flowi. The processor
utilization of a set ofn GS flows is given by

Ũ =
n∑

i=1

smax
i

p̃i
, (4.11)

while the resulting processor demand is then given by

h̃(t) =
∑

i:d̃i≤t

(⌊
t− (d̃i − p̃i)

p̃i

⌋)
smax

i + smax, (4.12)

where the summation takes place over the GS flowsi for which d̃i ≤ t.
As αi ≥ 1 andβi ≥ smax, it follows from (4.10) that

d̃i ≥ p̃i + smax. (4.13)

Substitutingd̃i from (4.13) in (4.12) gives

h̃(t) ≤
∑

i:d̃i≤t

(⌊
t− smax

p̃i

⌋)
smax

i + smax. (4.14)

Removing the floor function (b.c) gives

h̃(t) ≤
∑

i:d̃i≤t

(
t− smax

p̃i

)
smax

i + smax

= (t− smax)
∑

i:d̃i≤t

(
smax

i

p̃i

)
+ smax. (4.15)

4.2. Design of QoS support for Bluetooth 93

It follows from (4.15) that

h̃(t) ≤ (t− smax)
n∑

i=1

(
smax

i

p̃i

)
+ smax, t ≥ smax. (4.16)

SubstitutingŨ from (4.11) in (4.16) gives

h̃(t) ≤ Ũ(t− smax) + smax, t ≥ smax. (4.17)

During admission control, the processor demand function is examined only for
t ≥ mini d̃i ≥ smax (see (4.4) and (4.13)). From (4.17), it follows that during admission
controlh̃(t) ≤ t if Ũ ≤ 1, which implies that the set of GS flows is then schedulable as both
the processor utilization condition and the processor demand condition are met. Furthermore,
if U > 1 then the set of GS flows is not schedulable as the processor utilization condition is
not met in that case. Summarizing, if (4.13) is met, then the set ofn GS flow is schedulable
if and only if U ≤ 1.

Step 2
Let us define the individual processor utilization of GS flowi as the contribution of GS flow
i to the processor utilization, i.e.,

Ũi =
smax

i

p̃i
, (4.18)

where summation of the individual processor utilizations over all GS flows gives the total
processor utilization, i.e.,

Ũ =
n∑

i=1

Ũi. (4.19)

Furthermore, let us define the upper bound on the processor demand of set ofn GS flows as

h̃B(t) =
∑

i:d̃i≤t

(
t− (d̃i − p̃i)

p̃i

)
smax

i + smax. (4.20)

Finally, let us define the upper bound on the individual processor demand of GS flowi as the
contribution of GS flowi to the upper bound on the processor demand, i.e.,

h̃B
i (t) =


t−(d̃i−p̃i)

p̃i
smax

i , t ≥ (d̃i − p̃i),

0, t < (d̃i − p̃i),
(4.21)

where summation ofsmax and the upper bounds on the individual processor demands over
all GS flows gives the total upper bound on the processor demand, i.e.,

h̃B(t) =
n∑

i=1

hB
i (t) + smax. (4.22)

94 Chapter 4. QoS in Bluetooth: an ideal radio environment

Step 3
In order to determine the effect of modifyingαi and βi on the schedulability of a set of
GS flows that flowi is (or will be) part of, the derivatives of both the individual processor
utilization and the upper bound on the individual processor demand with respect to bothαi

andβi will be determined. For that, the individual processor utilization and the upper bound
on the individual processor demand have to be presented as a function ofαi andβi. This is
achieved by first presenting the delay bounddB

i as a function ofαi andβi. The delay bound
dB

i from (4.1) can be rewritten as

dB
i = xi

rp
i −Ri

Ri
+

Mi

Ri
+

Ctoti

Ri
+ Dtoti , (4.23)

where

xi =


bi−Mi

rp
i −rt

i
, rt

i ≤ Ri < rp
i ,

0, rt
i ≤ rp

i ≤ Ri.

(4.24)

As we already decided to consider the relative deadlined̃i as the error term of the Bluetooth
node under consideration, substitution ofd̃i from (4.10) in (4.23) gives

dB
i = xi

rp
i −Ri

Ri
+

Mi

Ri
+ αip̃i + βi +

Cremi

Ri
+ Dremi , (4.25)

whereCremi
andDremi

are the error terms of the remaining nodes in the GS path of GS flowi.

The requested fluid model service rateRi should be at least equal to the token rate. Conse-
quently, two complementary operational areas can be distinguished, depending on whether
the requested rate that follows from (4.25) is lower than the token ratert

i , or not.

Operational area I: In this operational area, the requested service rate that follows from (4.25)
is lower than the token ratert

i . Consequently, the requested service rate is set equal to the
token rate, i.e.,

Ri = rt
i . (4.26)

By substitutingRi from (4.26) in (4.9) the poll period can be written as

p̃i =
εmin
pi

rt
i

. (4.27)

By substitutingp̃i from (4.27) in (4.10) the relative deadline can be written as

d̃i = αip̃i + βi = αiε
min
pi

1
rt
i

+ βi. (4.28)

By substitutingp̃i from (4.27) in (4.18) the individual processor utilization of GS flowi can
be written as

4.2. Design of QoS support for Bluetooth 95

Ũi =
smax

i rt
i

εmin
pi

. (4.29)

By substitutingp̃i from (4.27) in (4.21) the upper bound on the individual processor demand
of GS flowi can be written as

h̃B
i (t) =


smax

i rt
i

εmin
pi

(t− βi)− (αi − 1)smax
i , t ≥ (d̃i − p̃i),

0, t < (d̃i − p̃i).

(4.30)

It follows that the derivatives of the individual processor utilization with respect toαi andβi

are given by

∂Ũi

∂αi
= 0, (4.31)

and

∂Ũi

∂βi
= 0. (4.32)

It also follows that the derivatives of the upper bound on the individual processor demand
with respect toαi andβi are given by

∂h̃B
i (t)

∂αi
=

 −smax
i , t ≥ (d̃i − p̃i),

0, t < (d̃i − p̃i),
(4.33)

and

∂h̃B
i (t)

∂βi
=


− smax

i rt
i

εmin
pi

, t ≥ (d̃i − p̃i),

0, t < (d̃i − p̃i).

(4.34)

Operational area II : In this operational area, the requested rate that follows from (4.25) is
not lower than the token ratert

i . Consequently, the requested service rate is given by

Ri =
xir

p
i + Mi + αiε

min
pi + Cremi

dB
i + xi − βi −Dremi

. (4.35)

By substitutingRi from (4.35) in (4.9) the poll period can be written as

p̃i =
εmin
pi (dB

i + xi − βi −Dremi
)

xir
p
i + Mi + αiεmin

pi + Cremi

, (4.36)

while by substitution of̃pi from (4.36) in (4.10) the relative deadline can be written as

d̃i = αip̃i + βi =
αiε

min
pi (dB

i + xi − βi −Dremi
)

xir
p
i + Mi + αiεmin

pi + Cremi

+ βi. (4.37)

By substitutingp̃i from (4.36) in (4.18) the individual processor utilization of GS flowi can
be written as

96 Chapter 4. QoS in Bluetooth: an ideal radio environment

Ũi =
smax

i (xir
p
i + Mi + αiε

min
pi + Cremi

)
εmin
pi (dB

i + xi − βi −Dremi
)

. (4.38)

By substitutingp̃i from (4.36) in (4.21) the upper bound on the individual processor demand
of GS flowi can be rewritten as

h̃B
i (t) =


smax

i

(
(t−βi)(xir

p
i +Mi+αiε

min
pi +Cremi

)

εmin
pi (dB

i +xi−βi−Dremi
)

+ 1− αi

)
, t ≥ (d̃i − p̃i),

0, t < (d̃i − p̃i).

(4.39)

The derivatives of the individual processor utilization with respect toαi andβi are given by

∂Ũi

∂αi
=

smax
i

dB
i + xi − βi −Dremi

, (4.40)

and

∂Ũi

∂βi
=

smax
i (xrp

i + Mi + αiε
min
pi + Cremi

)
εmin
pi (dB

i + xi − βi −Dremi)2
. (4.41)

The derivatives of the upper bound on the individual processor demand with respect toαi and
βi are given by

∂h̃B
i (t)

∂αi
=


smax

i (t−tri
)

dB
i +xi−βi−Dremi

, t ≥ (d̃i − p̃i),

0, t < (d̃i − p̃i),
(4.42)

and

∂h̃B
i (t)

∂βi
=


smax

i (t−tri
)(xrp

i +Mi+αiε
min
pi +Cremi

)

(dB
i +xi−βi−Dremi

)2εmin
pi

, t ≥ (d̃i − p̃i),

0, t < (d̃i − p̃i),

(4.43)

wheretri
= (dB

i + xi − Dremi
) is the pointt at whichhB

i (t) remains unchanged whenαi

and/orβi are modified. Furthermore, fort < tri
and t > tri

, hB
i (t) changes in opposite

directions whenαi and/orβi are modified.

Step 4
Based on the above, the following observations can be made:

a. In both operational area I and operational area II, the derivatives of the individual pro-
cess utilization∂Ui

∂αi
and ∂Ui

∂βi
are non-negative.

b. In operational area I, ift ≥ (d̃i − p̃i), then the derivatives of the upper bound on the

individual processor demand∂h̃B
i

∂αi
(t) and ∂h̃B

i

∂βi
(t) are strictly negative.

4.2. Design of QoS support for Bluetooth 97

c1. In operational area II, ift > (dB
i + xi −Dremi

) andt ≥ (d̃i − p̃i), then the derivatives

of the upper bound on the individual processor demand∂h̃B
i

∂αi
(t) and ∂h̃B

i

∂βi
(t) are strictly

positive.

c2. In operational area II, if(d̃i − p̃i) ≤ t < (dB
i + xi − Dremi), then the derivatives of

the upper bound on the individual processor demand∂h̃B
i

∂αi
(t) and ∂h̃B

i

∂βi
(t) are strictly

negative.

d. From (4.3) and (4.20) it follows that an increase ofh̃B(t) never leads to a decrease of
h̃(t).

Step 5
In order to show that it is not advantageous to increased̃i beyondd̃i = p̃i + smax consider a
set ofn GS flows for whichαi = 1 andβi = smax for each GS flowi and which cannot be
admitted. This means that the processor utilization exceeds unity (U > 1) as the processor
utilization condition is a necessary and sufficient condition whenαi ≥ 1 andβi ≥ smax.
According to observation (a), increasingαi and/orβi never decreases the processor utiliza-
tion. In other words, increasingαi and/orβi will not help in making the set ofn GS flows
schedulable.

In order to show that the effect, of modifyingαi andβi of a GS flowi, on the admission of
a set ofn GS flows that GS flowi belongs (or will belong) to cannot be determined a priori,
consider a set ofn GS flows for which the processor utilization condition is met. Further-
more, assume that a single bottleneck exists attb at whichh̃B(tb) = h̃(tb) = limt↓tb t, and
that the set ofn GS flows can thus not be admitted.

Now consider a GS flowi that is one of then GS flows. According to observation (c1), if GS
flow i operates in operational area II, and iftb > (d̃i− p̃i) andtb > (dB

i +xi−Dremi
), then

increasingαi and/orβi will increaseh̃B
i (tb) and thus̃hB(tb). According to observation (d),

h̃(tb) will not decrease and the bottleneck attb remains. On the other hand, decreasingαi

and/orβi decreases̃hB
i (tb) and thus̃hB(tb). Since by definitioñhB(tb) ≥ h̃(tb), h̃(tb) will

also decrease. Consequently, decreasingαi and/orβi (of GS flowi) is a necessary condition
to let the set ofn GS flows be schedulable.

Finally, consider a GS flowi that is one of then GS flows. According to observation (c2), if
GS flow i operates in operational area II, and if(d̃i − p̃i) ≤ tb < (dB

i + xi − Dremi
), then

decreasingαi and/orβi will increaseh̃B
i (tb) and thus̃hB(tb). According to observation (d),

h̃(tb) will not decrease and the bottleneck attb remains. On the other hand, increasingαi

and/orβi decreases̃hB
i (tb) and thus̃hB(tb). Since by definitioñhB(tb) ≥ h̃(tb), h̃(tb) will

also decrease. Consequently, increasingαi and/orβi (of GS flowi) is a necessary condition
to let the set ofn GS flows be schedulable. The same applies if GS flowi operates in opera-
tional area I whiletb ≥ (d̃i − p̃i).

Summarizing, in order to determineαi andβi for a GS flowi such that a set of GS flows that
GS flow i belongs (or will belong) to can be admitted, it must be known whether GS flowi
operates (or will operate) in operational area I or II. Furthermore, the place of potential bot-
tlenecks must be known. Finally, the pointtri

= (dB
i + xi −Dremi

) must be known, where
Dremi

is the cumulative rate independent deviation from the fluid model of the remaining

98 Chapter 4. QoS in Bluetooth: an ideal radio environment

hops of the path of GS flowi (Dremi
= 0 in case of a single hop GS flowi). As none of these

aspects are known a priori, the best value ofαi andβi cannot be determined a priori.

Based on the previous, it is decided to set the relative deadline of each GS flowi at

d̃i = p̃i + smax. (4.44)

4.2.1.4 Exporting C and D error terms

As mentioned in Section 4.2.1.2, it is decided to consider the relative deadlined̃ as theC
andD error terms, i.e.,

Ci

Ri
+ Di = d̃i. (4.45)

Substitutingd̃i from (4.44) in (4.45) gives

Ci

Ri
+ Di = p̃i + smax. (4.46)

Substitutingp̃i from (4.9) in (4.46) give

Ci

Ri
+ Di =

εmin
pi

Ri
+ smax. (4.47)

The C error term is the rate-dependent deviation from the fluid model, whereas theD er-
ror term is the rate-independent deviation from the fluid model. From (4.47), it follows that
Ci = εmin

pi
andDi = smax.

Note that with respect to multi-hop GS flows, forwarding intermediate nodes should account
for packetization as packets are not sent forward to the next node before they are completely
received from the previous node. Consequently, if the Bluetooth hop is not the first hop for a
multi-hop GS flowi, it should increaseCi by Mi in order to account for packetization.

4.2.2 Variable-interval polling

The fixed-interval poller of Section 4.2.1 plans polls for a GS flowi with a fixed interval
p̃i. The poll interval̃pi is determined taking into account the packet sizeLpi

that is associated
with the least number of bytes per poll (minimum poll efficiency). This leads to the following
drawbacks:

a. The range of packet sizes may comprise several packet sizes (i.e, ifMi > mi). In that
case, interval̃pi is too small when packet sizes other thanLpi

are used, and GS flowi
is then polled more often than necessary.

b. If a planned poll for GS flowi is executed, the next poll for GS flowi will be planned
for p̃i after the last time a poll for GS flowi was planned for, even if that poll did not
result in a GS segment of flowi.

4.2. Design of QoS support for Bluetooth 99

c. Planned polls are executed even if it is known that no GS traffic is available. As the
master has only knowledge about the availability of traffic that is directed from the
master to a slave, this drawback only applies to GS flows from the master to a slave.

These drawbacks do not adversely affect the performance of the GS flows. On the contrary,
polling a GS flow more often than necessary will decrease the average delay of its packets.
However, polling the GS flows more often than needed consumes the resources that could
otherwise be used for retransmissions (in a non-ideal radio environment) and/or for transmis-
sion of best effort traffic. We propose three improvements to eliminate these drawbacks (see
Figure 4.2):

a. If a poll for GS flowi resulted in a last segment of a packetj with sizeLi,j , then plan
the next pollLi,j

Ri
time-units after the planned time of the poll that resulted in the first

segment of packetj of GS flowi. Hence, postpone the next pollgi,j time-units, where
(see also (4.6))

gi,j =
Li,j

Ri
− li,j p̃i ≥ 0. (4.48)

For instance, in Figure 4.2, the poll planned fort1, and which is executed att2, resulted
in the first GS segment of packetj of flow i. The poll planned fort3, and which is
executed att4 resulted in the last GS segment of the same packet. Consequently, the
next poll is planned fort6 = t1 + Li,j

Ri
rather than fort5 = t3 + p̃i. In other words,

the poll that was originally to be planned fort5 has been postponedgi,j = Li,j

Ri
− 2p̃i

time-units.

b. If a poll for GS flow i did not result in a GS segment of flowi, then obviously no GS
segment of flowi was available before that actual poll time. As a result, plan the next
poll a time periodp̃i after the actual time of the last poll for flowi rather than a time
periodp̃i after its planned time.

For instance, in Figure 4.2, the poll planned fort6 is executed att7. As it results in a
non-GS segment, the next poll is planned fort8 = t7 + p̃i rather than fort6 + p̃i.

c. If at a planned poll timetn the poller finds that there is no GS traffic to serve, then
that poll is skipped, and the next poll is planned fortn + p̃i. Since the poller has only
knowledge of traffic from the master to the slave, this improvement only applies to GS
flows that are directed from the master to the slave (not shown in Figure 4.2).

If the source of GS flowi offers its data using the packet size that leads to the minimum
poll efficiency (εmin

pi
), then the next poll after each last segment is planned for exactlyp̃i

time-units after the last time a poll was planned for (i.e.,gi,j = 0). The determination of̃pi,
d̃i, Ci andDi should take this worst case into account, hence they are the same as for the
poller presented in Section 4.2.1. Furthermore, the task set corresponding to the set of GS
flows becomes a sporadic task set, which is similar to a periodic task, except that the former
is parameterized by the minimum interval between consecutive task instances instead of by
a fixed interval [GRS96]. The feasibility analysis for such a set is the same as for a periodic
task set, except that the minimum interval between consecutive instances of a task is now
taken into account. As the minimum interval is the same as the fixed interval determined in
Section 4.2.1, the admission control is the same as described in Section 4.2.1.1.

100 Chapter 4. QoS in Bluetooth: an ideal radio environment

time

L /Ri,j i

g = L /R l p
i,j i,j i i,j i()-()Þ

ui ui

d Þi
p Þi p Þip Þi p Þi

si,j,1 2() si,j,2 2()

d Þi d Þi d Þi

non-GS segment

GS segment

planned poll

deadline of planned poll

t0 t1

actual poll

t2 t4t3 t5 t6 t7 t8

Figure 4.2: Planning polls with a variable time interval.

4.2.3 Improvement of the admission control

We assume the availability of logical channels distinguishing between QoS traffic and
best effort traffic, and that QoS traffic always has priority over best effort traffic. Conse-
quently, a poll for a GS flow in one direction also gives the opportunity to transmit GS traffic
of the same logical channel in the opposite direction. In other words, each GS poll of a slave
implies an opportunity to transmit GS traffic of the same logical channel in both directions.
Taking this fact into account, we improve the admission control in order to be able to accept
more flows.

Consider a GS flowk in one direction and a GS flowl in the opposite direction, which are set
up between the master and a particular slave. Furthermore, assume thatp̃k ≤ p̃l, and that all
the relative deadlines are determined according to Section 4.2.1.3. The latter implies that the
processor utilization condition (cf. 4.2) is a necessary and sufficient condition.

If the two GS flows use separate logical channels, then GS flowk and GS flowl have a
maximum segment size ofsmax

k andsmax
l respectively, which are not necessarily equal, and

each GS flows is polled independently of the other. Furthermore, each poll results in an empty
baseband packet in the opposite direction of the GS flow. However, if we let two oppositely
directed flows that involve the same slave share the same logical channel, then a poll for GS
flow k implies a poll for GS flowl and vice versa. Furthermore, the resulting maximum
segment size will be

s′max
k = s′max

l = smax
k + smax

l − 2
1600

, (4.49)

where the two slots were accounting for the empty baseband packets. Whenever the particu-
lar slave is polled, the next poll is planned no earlier thanp̃k after the planned time of the last
poll, i.e., the minimum poll interval is̃pk. By definition, both flows have the same maximum
segment size, i.e.,s′max

k = s′max
l . Knowing that flowl will piggyback on flowk, the admis-

sion control has to take into account only the request from flowk with maximum segment
sizes′max

k (=s′max
l).

4.3. Simulation studies 101

Note that in case of an ideal radio environment, where there are no retransmission that can
profit from piggybacking, it is only advantageous to apply piggybacking of GS flows if

smax
k

p̃k
+

smax
l

p̃l
>

s′max
k + s′max

l

min(p̃k, p̃l)
. (4.50)

In that case, piggybacking of GS flowk and GS flowl, which are oppositely directed and
involve the same slave, leads to a lower processor utilization.

In other words, if two oppositely directed GS flows exist between the master and a particular
slave, and if (4.50) is met, then the real-time task representing the GS flow with the highest
value ofp̃ should not be included in the feasibility check, and the two GS flows should share
the same logical channel.

4.3 Simulation studies

We introduced a poller named Predictive Fair Poller (PFP) in Chapter 3. This poller pre-
dicts the availability of data for each slave, and it keeps track of fairness. Based on these
two aspects, it decides which slave to poll next. In the BE case, a fair share of resources is
determined for each slave, and the fairness is based on the fractions of these fair shares of
resources. In the QoS case, this poller applies an EDF scheme to the QoS flows, while plan-
ning polls according to the descriptions in Section 4.2.1 and Section 4.2.2. The remaining
capacity is used to serve the BE flows according to the BE case.

We evaluate the PFP implementations of the fixed-interval poller and the variable-interval
poller by means of simulations in two Guaranteed Service scenarios. In the first scenario,
we show the impact of the polling mechanism improvements on the performance of both the
guaranteed service flows and the best effort flows. In the second scenario, we compare the
PFP implementation of the variable-interval poller with an SCO channel.

The simulation tool we used is Network Simulator (ns2) [ns2] with Bluetooth extensions [Nie00]
from Ericsson Switchlab, together with our ns2 implementation of PFP, the fixed-interval
poller and the variable-interval poller. The parameters of the PFP with respect to serving the
BE flows are the same as in Section 3.5.1.

4.3.1 Scenario I:Comparison between the fixed-interval poller and the variable-
interval poller

4.3.1.1 Purpose of the simulation

The purpose of simulating this scenario is to show that the variable-interval poller is able
to save more bandwidth than the fixed-interval poller.

102 Chapter 4. QoS in Bluetooth: an ideal radio environment

S5

S1 M

S2

S4

S6

S7

S3

fl
o
w

3
fl
o
w

4

fl
o
w

 5

flo
w

 6

flo
w

7
flo

w
8

flow
10flow

9

flow 12

flow 11

flow 1

flo
w

2

GS flow

BE flow

Figure 4.3: Simulation setup of scenario I

4.3.1.2 Description of the simulation scenario

The simulations are performed using the setup of Figure 4.3, while making the following
assumptions:

• Seven slaves and a master form a piconet, while flows are set up as depicted in the
figure.

• Flows 1 to 4 are GS flows, for which the same delay bound is requested, whereas flows
5 to 12 are BE flows (background traffic).

• For the GS flows, the packet sizes are uniformly distributed with a minimum size of 144
bytes, and a maximum size of 176 bytes, i.e.,mi = 144 bytes andMi = 176 bytes for
each GS flowi. The corresponding average packet size is 160 bytes. In case of a data
rate of 64 kbps, this average packet size corresponds to a packet rate of 50 packets/sec,
which is a realistic packet rate for audio codecs.

• For the BE flows, the packet sizes are of a fixed size of 176 bytes.

• The time between two consecutive packet generations of the same GS flow equals the
size of the first packet divided by a data rate of 8 kbytes/s (64 kbps). The resulting
average time interval between two packet generations of the same GS flow is 20 ms.

• The sources of the BE flows generate packets with fixed intervals that depend on the
BE load.

• In the first part of scenario I, the delay requirement is set at a fixed value and the sources
of the BE flows generate traffic at an equal rate, while simulations are performed at
different total BE loads. In the second part of scenario I, the sources of flows 5/6,
7/8, 9/10 and 11/12 generate BE traffic at a data rate of 42.4 kbps, 48 kbps, 53.6
kbps and 59.2 kbps respectively, while simulations are performed at different delay
requirements.

• The allowed baseband packet types are DH1 and DH3, with a maximum payload size
of 27 bytes and 183 bytes, respectively (including 4 bytes L2CAP header).

• Furthermore, the segmentation policy requires that the DH3 baseband packet is used,
unless the remainder of the packet fits in the DH1 baseband packet.

4.3. Simulation studies 103

Because of the packet size distribution and the corresponding inter-generation time of pack-
ets, the remaining parameters of the token bucket specification are

rp
i = rt

i = 8 kbytes/s, i ∈ {1, 2, 3, 4}, (4.51)

and

bi ≥ Mi, i ∈ {1, 2, 3, 4}. (4.52)

Because of the packet sizes the source of each GS flowi can use, and because of the allowed
baseband packet types, the minimum poll efficiencyεmin

pi
is achieved with a packet size of

144 bytes, which is sent using one DH3 baseband packet. Hence, theC error term for these
flows is given byCi = εmin

pi
= 144 bytes for each GS flowi. As all the nodes are allowed

to use DH3 baseband packets, the possibility must be taken into account that both the master
and the addressed slave transmit a DH3 packet. Consequently, theD error term is given by
Di = 2 3

1600 = 3.75 ms for each GS flowi.

According to Section 4.2, the GS flows 1 to 4 can be looked at as a set of three periodic or
sporadic tasks dependent on whether the fixed-interval poller or the variable-interval poller is

considered. In both cases, each taski is described by a tuple(pi, ei, di) = (
εmin
pi

Ri
, smax

i , Ci

Ri
+

Di). All the GS flows are described by equal traffic specifications (token bucket specifica-
tion), while sharing the same piconet and thus the same maximum possible segment size
(smax). As each GS flow is also requesting the same delay bound, the tuple describing
each GS flowi can be simplified to(144

R , 4
1600 , 144

R + 6
1600) for GS flows 1 and 2, and

(144
R , 6

1600 , 144
R + 6

1600) for the pair of GS flows 3 and 4. Considering the feasibility anal-
ysis of Section 4.2.1.1, the GS flows can be admitted as long as

U = 2
4

1600R

144
+

6
1600R

144
≤ 1. (4.53)

Consequently, the three GS flows can be admitted as long asR ≤ 16.457 kbytes/s. This
implies that the minimum delay bound that can be requested isďB ≈ 23.2 ms (see (4.1)). On
the other hand, the requested fluid model bandwidthRi of a GS flowi should never be lower
than its token ratert

i . SubstitutingRi = rt
i in (4.1), leads to the delay bound that will never

be exceeded, i.e.,̂dB
i = 43.75 ms for each GS flowi (see the knee at delay requirement of

43.75 ms in Figure 4.61, which is to be discussed below).

4.3.2 Simulation results

As mentioned in Section 4.2.2, the fixed-interval poller plans polls more often than nec-
essary. This has advantageous impact on the mean delay of the GS flows. As can be seen
in Figure 4.4, all the GS flows experience the same low mean delay irrespective of the back-
ground best effort load. The reason for this is that the fixed-interval poller polls all the GS
flows with the same fixed interval. The variable-interval poller polls GS flows only when it
assumes that it is needed. For instance, flow 2 is a GS flow that is not involved in piggyback-
ing and that is directed from the master to the slave. This flow will only be polled when GS

1The simulation times are chosen such that each (two-sided) 95% confidence interval is less than 2% of its
corresponding determined average.

104 Chapter 4. QoS in Bluetooth: an ideal radio environment

50 100 150 200 250 300 350 400 450 500 550
0

2

4

6

8

10

12

14

Total best effort load (kbps)

M
ea

n
de

la
y

(m
s)

flow 1
flow 2
flow 3
flow 4

Figure 4.4: Scenario I: Mean delay as a function of the total best effort load for the fixed-interval poller
(dB = 23.2 ms)

traffic is actually available and when it should be transmitted according to the fluid model.
This can be seen in Figure 4.5, where flow 2 experiences a mean delay higher than the ones
experienced by the remaining GS flows. Furthermore, these remaining GS flows experience
mean delays higher than the one experienced under the fixed-interval poller. The reason for
this is that the GS flows are polled less often, depending on the packet sizes they transmit.

Although the mean delay of the GS flows is higher under the variable-interval poller than
under the fixed-interval poller, delay bounds are never exceeded. Moreover, the variable-
interval poller consumes less resources, saving resources that can be used for retransmissions
(in a non-ideal radio environment) or for the transmission of best effort traffic.

Figure 4.6 and Figure 4.7 show the sum of the upstream and downstream throughput of the
different slaves as a function of the delay requirement. As could be expected, the GS flows
always achieve their maximum throughput as long as they are admitted by the admission
control. The throughput of the best effort flows 5 to 12 depends on the requested delay bound
of the GS flows as well as on the BE loads (fairness). It can be seen from Figure 4.6 and
Figure 4.7 that the best effort flows achieve a higher throughput when served by the variable-
interval poller.

4.3.2.1 Conclusions of scenario I

The simulation results showed that a higher BE throughput can be achieved in case a
variable-interval poller is used for polling GS flows instead of a fixed-interval poller. Espe-
cially with respect to master-to-slave GS flows, this higher BE throughput is achieved at the
cost of slightly higher response times for the GS flows.

4.3. Simulation studies 105

50 100 150 200 250 300 350 400 450 500 550
0

2

4

6

8

10

12

14

Total best effort load (kbps)

M
ea

n
de

la
y

(m
s)

flow 1
flow 2
flow 3
flow 4

Figure 4.5: Scenario I: Mean delay as a function of the total best effort load for the variable-interval
poller (dB = 23.2 ms)

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
56

64

72

80

88

96

104

112

120

128

Delay requirement (ms)

T
hr

ou
gh

pu
t (

kb
ps

)

S1 (GS) flow 1
S2 (GS) flow 2
S3 (GS) flow 3+4
S4 (BE) flow 5+6
S5 (BE) flow 7+8
S6 (BE) flow 9+10
S7 (BE) flow 11+12

Figure 4.6: Scenario I: Throughput as a function of the delay requirement for the fixed-interval poller

106 Chapter 4. QoS in Bluetooth: an ideal radio environment

22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
56

64

72

80

88

96

104

112

120

128

Delay requirement (ms)

T
hr

ou
gh

pu
t (

kb
ps

)

S1 (GS) flow 1
S2 (GS) flow 2
S3 (GS) flow 3+4
S4 (BE) flow 5+6
S5 (BE) flow 7+8
S6 (BE) flow 9+10
S7 (BE) flow 11+12

Figure 4.7: Scenario I: Throughput as a function of the delay requirement for the variable-interval
poller

4.3. Simulation studies 107

S3

M

S2

S1

fl
o
w

1
fl
o
w

2

flo
w

5
flo

w
6

fl
o

w
 3

flo
w

 4

GS flow

BE flow

Figure 4.8: Simulation setup of scenario II

4.3.3 Scenario II:
Comparison between the variable-interval poller and an SCO channel

4.3.3.1 Purpose of the simulation

The purpose of simulating this scenario is to investigate whether the same low total delay
requirements can be met by using the variable-interval poller for polling GS flows instead of
using an SCO channel. For this purpose, we use a traffic source that SCO channels are very
suitable for. Furthermore, this simulation compares the bandwidth saved in case the variable-
interval poller is used for serving these traffic flows and in case an SCO channel is used for
the same purpose.

4.3.3.2 Description of the simulation scenario

The simulations are performed using the simulation setup of Figure 4.8, while making
the following assumptions:

• Three slaves and a master form a piconet

• Flows 1 to 4 are GS flows, which the same delay bound is requested for.

• Flows 5 and 6 are BE flows generating 1 Mbps of background traffic.

• The sources of GS flows 1 to 4 are sample-based codecs that generate samples (1
sample = 1 byte) at a fixed data raterd.

• The total delay that a packet experiences includes the time needed to collect and pack-
etize samples (packetization delay), the queueing delay, and the transmission delay.
Taking into account only packets that fit in a single baseband packet, the larger the
packet size, the fewer baseband packets are needed to obtain a certain data rate, but
also the higher the packetization delay of a packet. Furthermore, the larger the base-
band packet, the higher its transmission delay.

108 Chapter 4. QoS in Bluetooth: an ideal radio environment

• The sources of the GS flows generate packets of a fixed sizeL that depends on the total
delay requirement. In case of an SCO connection2 this packet sizeL is chosen such
that the SCO interval, which is the interval between two SCO packets of the same flow,
is maximized. In case of an ACL connection, this packet sizeL is chosen such that
the (individual) processor utilization is minimized. Figure 4.9 and Figure 4.10 show
the chosen packet sizeL as a function of the total delay requirement for a data rate
of rd = 4 kbytes/s andrd = 8 kbytes/s respectively. For instance, for a data rate of
rd = 4 kbytes/s and a total delay requirement of 40 ms, the chosen packet size is 23
bytes for the ACL channel and 30 bytes for the SCO channel.

• The sources of the BE flows generate packets of a fixed size of 179 bytes.

• For the BE slave (S3), the allowed (ACL) baseband packet types are DH1 and DH3,
with a maximum payload size of 27 bytes and 183 bytes, respectively (including 4
bytes L2CAP header).

• For the GS slaves (S1 and S2), the allowed ACL baseband packet type is DH1 if the
chosen packet sizeL is not higher than 23 bytes. Otherwise, the DH3 packet type will
also be allowed.

• The allowed SCO baseband packet type is HV3 with a maximum payload of 30 bytes.

• The (ACL) segmentation policy requires that the largest allowable baseband packet is
used, unless the remainder of the packet fits into a smaller baseband packet.

Note that given a total delay requirement, the GS flows may use a different packet size in
the two compared cases (one using an ACL channel with PFP polling, and the other using an
SCO channel).

Because of the simulation assumptions, the token bucket specification is given by

rp
i = rt

i = rd
i , i ∈ {1, 2, 3, 4}, (4.54)

and

bi ≥ Mi = mi = L, i ∈ {1, 2, 3, 4}. (4.55)

4.3.3.3 Simulation results

Figure 4.12 and Figure 4.13 show the best effort throughput as a function of the total
delay requirement. The PFP line shows the simulated values of the BE throughput that is
achieved in case the variable-interval poller is used, whereas the SCO line shows the ana-
lytically obtained value of the BE throughput that would have been achieved in case SCO
channels would have been used for GS flows 1 to 4.

2In the Bluetooth system specification [BT001], each SCO packet type is associated with a fixed payload size and
a minimum SCO interval. In this work, we assume that both the payload size and the SCO interval can be chosen
without restraint, as long as the associated fixed payload size is not exceeded, and as long as the SCO interval is at
least two time slots. Although SCO links are favored by this assumption, it allows for a more fair comparison with
ACL links.

4.3. Simulation studies 109

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Total delay requirement (ms)

L
(b

yt
es

)
ACL
SCO

Figure 4.9: Scenario II: Chosen packet size L as a function of the total delay requirement for rd =
4 kbytes/s (32 kbps)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Total delay requirement (ms)

L
(b

yt
es

)

ACL
SCO

Figure 4.10: Scenario II: Chosen packet size L as a function of the total delay requirement for rd =
8 kbytes/s (64 kbps)

The vertically dashed lines show the minimum total delay that can be guaranteed when PFP
is used. As the BE throughput of the PFP at that minimum total delay is zero, that point is
not shown in the figures as a simulated mean cannot be obtained.

110 Chapter 4. QoS in Bluetooth: an ideal radio environment

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Total delay requirement (ms)

S
C

O
 in

te
rv

al
 (s

lo
ts

)

rd = 32 kbps
rd = 64kbps

Figure 4.11: Scenario II: SCO interval as a function of the total delay requirement

It can be seen that the variable-interval poller can achieve delay bounds that are close to the
delay bounds than can be achieved using an SCO channel. Furthermore, it can be seen that
the variable-interval poller achieves a higher BE throughput, unless low total delays are re-
quired for low data rates. This higher BE throughput is especially prominent for higher GS
loads (see Figure 4.13).

With respect to the SCO channel, it can be seen in Figure 4.12 that the BE throughput de-
creases if the total delay requirement is increased beyond a value of approximately 15 ms.
The reason for this is that the packet size is chosen such that the SCO interval is maximized.
Increasing the total delay requirement may increase the SCO interval (see Figure 4.11), which
means that the number of SCO intervals per seconds decreases. The poller has to take into
account that the BE slaves may use the maximum baseband packet size that they are allowed
to use (DH3). Consequently, an increase of the SCO interval may not be sufficient for al-
lowing an additional BE transmission within that SCO interval. Hence, the number of BE
transmission per second may decrease when the SCO interval is increased.

4.3.3.4 Conclusions of scenario II

The simulation results showed that the variable-interval poller is able to meet total delay
requirements that are comparably low to the ones that can be met using an SCO channel.
Moreover, the simulation results showed that, for total delay requirements as low as 20 ms,
the variable interval poller is able to do so while consuming less resources, which explains
the higher total best effort throughput obtained by the variable-interval poller.

4.3. Simulation studies 111

0 10 20 30 40 50 60 70 80 90 100
0

80

160

240

320

400

480

560

640

Total delay requirement (ms)

T
ot

al
 b

es
t e

ffo
rt

 th
ro

ug
hp

ut
 (

kb
ps

)

PFP
SCO

Figure 4.12: Scenario II: Total best effort throughput as a function of the total delay requirement for
rd = 4 kbytes/s (32 kbps) (BE load of 1 Mbps)

0 10 20 30 40 50 60 70 80 90 100
0

80

160

240

320

400

480

560

640

Total delay requirement (ms)

T
ot

al
 b

es
t e

ffo
rt

 th
ro

ug
hp

ut
 (

kb
ps

)

PFP
SCO

Figure 4.13: Scenario II: Total best effort throughput as a function of the total delay requirement for
rd = 8 kbytes/s (64 kbps) (BE load of 1 Mbps)

112 Chapter 4. QoS in Bluetooth: an ideal radio environment

4.4 Discussion

As mentioned in Section 4.1.1, Guaranteed Service guarantees a delay bound by provid-
ing a rate guarantee. Consequently, the design of Guaranteed Service support for Bluetooth
comprised the design of rate guarantees support for Bluetooth. As a result, this chapter de-
signed the support of two types of QoS for Bluetooth, i.e., guaranteed delays and guaranteed
rates.

The Bluetooth polling mechanism determines the delay that packets experience in a piconet.
The fixed-interval poller and the variable-interval poller introduced in this chapter divide
bandwidth among the slaves such that the delay packets experience is bounded. Moreover,
the variable-interval poller polls in such a way that a minimum amount of slots is consumed
while polling the GS flows, saving bandwidth that can be used for transmission of BE traffic
and/or for retransmission of QoS traffic.

A comparison with an SCO channel showed that the variable-interval poller is able to achieve
delay bounds that approach the delay bounds that can be achieved using an SCO channel. For
delay requirements as low as 20 ms, the variable-interval poller achieves better BE through-
put than when an SCO channel is used for the GS flows. As opposed to an SCO channel,
the variable-interval poller can also perform retransmissions.This property can be exploited
to avoid the link quality problems of SCO channels in bad radio environments, while keep-
ing up QoS. This will be shown in Chapter 5, when discussing the provisioning of QoS in a
non-ideal radio environment.

Chapter 5

QoS in Bluetooth: a non-ideal radio environment

The previous chapter discussed polling mechanisms that are able to provide QoS in an ideal
radio environment, where retransmissions are not needed. This chapter discusses the same
polling mechanisms while releasing the restriction of the ideal radio environment. This chap-
ter is structured as follows. After the problem description in Section 5.1, Section 5.2 discusses
the determination of the so-called flush timeout. Section 5.3 defines methods to perform re-
transmissions as soon as possible, but without causing scheduling deadlines to be missed.
Section 5.4 presents simulation studies of the proposed methods. Finally, Section 5.5 con-
cludes this chapter.

5.1 Problem description

The previous chapter discussed polling mechanisms that are able to provide QoS in an
ideal radio environment, where retransmission are not needed. In this chapter, the restric-
tion to such an ideal radio environment is released, i.e., all the flows experience a non-ideal
radio environment, where transmission errors may occur. In a non-ideal radio environment,
the baseband packets are sometimes erroneously received and consequently discarded. The
sender of the discarded baseband packet does not receive an acknowledgment and will re-
transmit the baseband packet until it receives an acknowledgment or until a flush timeout
timer expires. The flush timeout timer is a timer that is used to bound the time which a sender
is allowed to (re)transmit a baseband packet in. After expiry of the flush timeout timer, the
complete L2CAP packet which the baseband packet belongs to is flushed, and the sender
proceeds with the first baseband packet of the next L2CAP packet (if available).

In a non-ideal radio environment, a baseband packet may not be received correctly at the first
try. Depending on the time at which retransmission of that baseband packet is performed,
and on the flush timeout period, that baseband packet may arrive in time, it may arrive late,
or the complete L2CAP which it belongs to may be discarded. In case baseband packets that
belong to a GS flow are considered, only L2CAP packets that arrive in time are useful for
the receiver of the GS flow, i.e., it makes no difference whether an L2CAP packet is late or
discarded. Note that when an L2CAP packet consists of multiple baseband packets, some of
the baseband packets arriving late does not necessarily imply that the L2CAP packet is also
late.

An obvious way of scheduling retransmissions, is performing retransmissions as soon as no
GS polls are pending, i.e., waiting until the EDF scheduler is idle. However, waiting until
the EDF scheduler is idle may introduce an additional delay that is unacceptable, and L2CAP
packets will more often arrive late or will be discarded depending, among others, on the flush
timeout period.

The main problem addressed in this chapter is the scheduling of retransmissions, while meet-
ing deadlines of retransmitted L2CAP packets as much as possible, and while always meeting

114 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

deadlines of L2CAP packets that need no retransmissions. For this, we first define the largest
possible flush timeout that prevents retransmission of L2CAP packets that would cause next
L2CAP packets of the same flow to be late. An additional benefit of such a flush timeout is
that L2CAP packets that would be late are flushed. Consequently, the deadlines of L2CAP
packets that are not flushed are always met. Second, we define methods to identify whether
a retransmission can take place before the EDF scheduler is idle, but without causing a poll
deadline to be missed. The reason for this is to perform the retransmissions as much a possi-
ble within the flush timeout.

5.2 Determining the flush timeout

The flush timeout period, denoted asTflush, is the time period that a particular master or
slave is allowed to try to correctly transmit an L2CAP packet in, starting from the time that
L2CAP packet arrives at the particular master or slave. On the one hand, a larger timeout
value implies that more retransmissions of the same L2CAP packet are allowed to take place.
On the other hand, a larger timeout value implies that the next L2CAP can experience a larger
initial delay as its service will only start after the preceding L2CAP packet is either correctly
transmitted or flushed.

The EDF polling mechanisms introduced in Chapter 4 poll GS flows such that an L2CAP
packetj belonging to GS flowi finishes its service at most a timeLi,j

Ri
+ d̃i after the moment

its service would have started in the fluid model (see also Section 4.2.1.2). This can only be
guaranteed if the first poll that can actually be used for servicing L2CAP packetj is planned
no later thañpi after its service would have started in the fluid model.

First, let us define an eligible GS L2CAP packet as a GS L2CAP packet whose service would
have started in the (theoretical) fluid model at least a time periodp̃i ago, and which is not
(yet) completely served in the actual Bluetooth system. Two conditions must be met in or-
der to guarantee that the first poll that can actually be used for servicing L2CAP packetj is
planned no later thañpi after its service would have started in the fluid model. First, a poll
must be planned at the right time, which the EDF polling mechanisms of Chapter 4 already
take care of. Second, eligible GS L2CAP packets must also be actually available for trans-
mission, which means that a poll for a GS flow that has an eligible GS L2CAP packet should
result in a baseband packet belonging to that eligible GS L2CAP packet. In other words, an
eligible GS L2CAP packet should not be blocked by a preceding L2CAP packet.

In an ideal radio environment, each baseband packet transmission succeeds, and consequently
each GS L2CAP packet is completely served within a time periodLi,j

Ri
+ d̃i from the time

its service would have started in the fluid model. By definition, the following GS L2CAP
packet is not eligible yet, and a GS L2CAP packet will never be blocked by its preceding GS
L2CAP packet. In a non-ideal radio environment, baseband packets may be hit by errors and
consequently baseband packets may need to be retransmitted. As a result, some GS L2CAP
packets will not be successfully served within the time period mentioned above. A direct con-
sequence is that following GS L2CAP packets may be blocked, which makes it impossible to
guarantee that GS L2CAP packets will be completely served within a time periodLi,j

Ri
+ d̃i

from the time its service would have started in the fluid model. The only way to eliminate this
problem is to bound the time a master or a slave can try to correctly transmit or retransmit

5.3. Performing retransmission in slack time 115

(portions of) a GS L2CAP packet.

In the fluid model, an L2CAP packetj will not be served before L2CAP packetj − 1 is
completely served. Consequently, and according to the definition of an eligible GS L2CAP
packet, a packetj of flow i that arrives at timetai,j

becomes eligible at

tei,j = max(tai,j + p̃i, tei,j−1 +
Li,j−1

Ri
), (5.1)

whereLi,j−1 is the size of packetj − 1 of flow i. In order to guarantee that a GS L2CAP
packet is never blocked by (retransmission of) a preceding GS L2CAP packet, the (re)-
transmission of packetj−1 of flow i should be aborted as soon as packetj of flow i becomes
eligible. The flush timeout timer will be used for this purpose.

We assume that a flush timeout can be set for each L2CAP packet and that the flush timeout
of a GS L2CAP packet cannot be modified during the lifetime of that GS L2CAP packet.
Consequently, the flush timeout of a GS L2CAP packet must be set at the arrival time of
corresponding GS L2CAP packet. According to the above, the flush timeout will be given by

Tflushi,j
= tei,j+1 − tai,j

, (5.2)

wheretai,j
is the arrival time of packetj of flow i, while tei,j+1 is the eligibility time of the

following GS L2CAP packet. By substitutingtei,j from (5.1) in (5.2) the flush timeout can
be written as

Tflushi,j = max(tai,j+1 − tai,j + p̃i, tei,j +
Li,j

Ri
− tai,j

) (5.3)

Unfortunately, the arrival time of the next GS L2CAP packet, i.e.,tai,j+1 , is not generally
known in advance. As a result the flush timeout must be set to

T̃flushi,j = tei,j +
Li,j

Ri
− tai,j (5.4)

By setting the flush time out of an L2CAP packetj of GS flow i to T̃flushi,j , L2CAP packet
j +1 of the same GS flowi will never experience an initial delay higher thanp̃i. This is a key
requirement for correct functioning of the EDF polling mechanisms introduced in Chapter 4.

5.3 Performing retransmission in slack time

As mentioned in the introduction of this chapter, an obvious way for the polling mecha-
nism to perform retransmission is to wait until there are no pending GS polls, where a pending
GS poll is a planned GS poll whose planned time has arrived, but which is not executed yet.
In other words, one way of performing retransmissions is to perform retransmissions only if
the EDF scheduler is idle. In the literature, this is also referred to as backgrounding.

As the time in which (portions of) a GS L2CAP packet can be retransmitted is bounded by the
flush timeout, retransmission of GS baseband packets must be performed as soon as possible.
Performing retransmission in idle time may cause the flush timeout to expire. Therefore, the
slack of the EDF scheduler will be used for this purpose. The slack of the EDF scheduler is

116 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

the amount of time that the EDF scheduler can stop polling the GS flows without missing a
deadline of a scheduled GS poll.

In this section, the slack determination procedures will be explained. From these proce-
dures, five slack determination/checking policies will be extracted. The first policy is the
offline-determined slack usagepolicy, which is concerned with determining the slack during
admission control. The second policy is theonline-determined slack usagepolicy, which is
concerned with determining the slack at the time slack usage is needed. The third one is
theonline-checked slack usagepolicy, which checks whether a particular amount of slack is
available at the time usage of that amount of slack is needed. The fourth one is thehybrid-
determined slack usagepolicy, which is a combination of the offline and online slack deter-
mination policies. The last one is thehybrid-checked slack usagepolicy, which is a combi-
nation of the offline slack determination policy and the online slack checking policy. These
five mechanisms will be discussed in Sections 5.3.3-5.3.7. Prior to that, related work is given
in Section 5.3.1, and preliminaries are given in Section 5.3.2.

5.3.1 Related work

The problem of performing retransmissions in slack time corresponds to the problem of
scheduling a mixed set of hard deadline periodic tasks and aperiodic tasks under the EDF
algorithm. Hard deadline periodic tasks are tasks which are activated regularly, and which
have a deadline that must be met. Aperiodic tasks are tasks which are activated irregularly,
and which have a soft deadline that is desirable to be met, or which have no deadline at all.
In other words, aperiodic tasks must be executed as soon as possible.

Using fixed priority methods, this problem has been investigated by Lehoczky et. al. [LSS87],
who came up with the Deferrable Server and the Priority Exchange algorithm to enhance ape-
riodic responsiveness. The Deferrable Server creates a dedicated periodic server task for serv-
ing the aperiodic requests. Furthermore, this dedicated periodic server task only consumes
execution time if an aperiodic request is actually pending. Allowed execution time that is
not consumed is preserved in order to be consumed when an aperiodic request is made. At
the beginning of its period, the allowed execution time of the dedicated periodic server task
is replenished to its maximum. The Priority Exchange algorithm is similar to the Deferrable
Server, except that if no aperiodic request exists, the dedicated periodic server task exchanges
its priority with a lower priority periodic task. This exchange is done for the duration of the
remaining allowed execution time of the dedicated periodic server task, or until an aperiodic
request is made. The allowed execution time of the dedicated periodic server is replenished at
the start of its period. Sprunt et. al. [SSL89] came up with another service mechanism which
they called the Sporadic Server. The Sporadic Server is similar to the Priority Exchange al-
gorithm, except that the allowed execution time is now replenished in a way that forces the
execution time of the dedicated periodic server task to be spread out more evenly [GB95].
Finally, Lehoczky and Ramos-Thuel [LRT92] came up with a service mechanism which they
called Slack Stealer. The Slack Stealer is based on the idea of stealing processing time from
the periodic tasks, without causing their deadlines to be missed.

Using dynamic priority methods, Ghazalie and Baker proposed dynamic scheduling versions
of the Deferrable Server and the Sporadic Server [GB95]. Furthermore, they extended their

5.3. Performing retransmission in slack time 117

dynamic version of the Sporadic Server and came up with what they called the Deadline Ex-
change Server, which can discard remaining allowed execution time of the dedicated periodic
server task in exchange for earlier replenishment of the allowed execution time. Spuri and
Buttazzo [SB94][SB96] developed five online algorithms for serving soft aperiodic requests
in real-time systems, where a set of hard periodic tasks is scheduled using the EDF algorithm.
One of these algorithms is the Earliest Deadline Late (EDL) algorithm, which can be consid-
ered as a dynamic scheduling version of the Slack Stealing algorithm.

Bosch and Mullender [BM00] presented a scheduler which they called the∆L-scheduler. It
is similar to the EDL scheduler, except that the∆L-scheduler considers non-preemptively
scheduled resources.

Our approach is similar to the∆L-scheduler, except that we base our slack determination
method on the slack determination method used in the ClockWork real-time feasibility analy-
sis tool of Jansen et. al. [JHM02]. The major difference is that we also consider the presence
of non-real-time (best effort) tasks. Furthermore, we extended the method to online slack
determination in order to be able to exploit the additional idle time generated by our variable-
interval poller (see Chapter 4).

5.3.2 Slack determination procedure

Let us define the busy period of an EDF scheduler as a time period in which there is al-
ways at least one GS flow for which a poll is pending or being executed. Furthermore, let us
define the slack of the EDF scheduler as the amount of time that the EDF scheduler can stop
serving the GS flows without causing a deadline to be missed, provided that no transmission
errors occur.

Consider a busy period, starting from reference timet = 0, of an EDF scheduler that is
servingn GS flows. Furthermore, take into account that for each GS flowi, the first poll
is planned att = tfi , while mini tfi = 0 as the busy period starts att = 0. The processor
demand for any timet during this busy period is given by (confer (4.3))

h̃(t) =
∑

i:tfi+d̃i−p̃i≤t

(⌊
t− (d̃i − p̃i)− tfi

p̃i

⌋)
smax

i + smax. (5.5)

As mentioned before, the slack of an EDF scheduler is the amount of time that the EDF
scheduler can stop polling the GS flows without missing a deadline of a scheduled GS poll.
Hence, the slackS of an EDF scheduler is the minimum distance between the processor
demand̃h(t) and timet starting from the occurrence timeth of the first deadline, i.e., starting
from th = mini(tfi + d̃i). The slack of the EDF scheduler is

S = lim
τ→∞

Sl(τ), (5.6)

whereSl(τ) is the (local) minimum distance betweent andh̃(t) within the interval(th, τ),
which is given by

118 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

Sl(τ) = min
th ≤ t ≤ τ

(t− h̃(t)), for τ ≥ th. (5.7)

By substitution of the processor demandh̃(t) from (5.5) in (5.7), the minimum local distance
Sl(τ) can be written as

Sl(τ) = min
th ≤ t ≤ τ

(t−
∑

i:tfi+d̃i−p̃i≤t

(b t− (d̃i − p̃i)− tfi
p̃i

c)smax
i − smax), for τ ≥ th.

(5.8)

Determination of the slack using (5.6) is not practical as the time window over which the
determination takes place is not bounded. A practical approach would be defining a slack
determination time window(th, tsd) that is the smallest possible window such that the min-
imum distance betweent andh̃(t) found in that window can be guaranteed to be the global
minimum distance betweent andh̃(t), i.e, such that

Sl(tsd) = lim
τ→∞

Sl(τ) = S. (5.9)

Let us first define the distanceδh̃B(t) between the available processor timet and the upper

bound on the processor demandh̃B(t), i.e.,

δh̃B(t) = t− h̃B(t), (5.10)

where, for job streams with possibly different start times, the upper bound on the processor
demand is defined as

h̃B(t) =
∑

i:tfi+d̃i−p̃i≤t

(
t− (d̃i − p̃i)− tfi

p̃i

)
smax

i + smax. (5.11)

Enforced by the admission control, the processor utilization does not exceed unity, i.e.,Ũ =∑
i

smax
i

p̃i
≤ 1. Consequently, it follows from (5.11) that the upper bound on the processor

demand will never increase faster than the available processor timet. As a result, the distance
δh̃B(t) between the available processor timet and the upper bound on the processor demand

h̃B(t) is a non-decreasing function oft, i.e.,

min
t≥τ

δh̃B(t) = δh̃B(τ). (5.12)

By definition, the actual processor demandh̃(t) is not higher than its upper bound, from
which it can be concluded that

t− h̃(t) ≥ t− h̃B(t) = δh̃B(t). (5.13)

Substitution ofδh̃B(t) from (5.12) in (5.13) gives

min
t≥τ

(t− h̃(t)) ≥ δh̃B(τ). (5.14)

5.3. Performing retransmission in slack time 119

According to (5.14),δh̃B(τ) can be looked at as a lower bound on the distance betweent and
h̃(t) for t ≥ τ . From (5.14), (5.6) and (5.7) it can be concluded that

S = Sl(τ) if δh̃B(τ) ≥ Sl(τ). (5.15)

As δh̃B(τ) is a non-decreasing function ofτ , the smallest value ofτ for whichδh̃B(τ) ≥ Sl(τ)
is τ = tsd for which

δh̃B(tsd) = Sl(tsd) (5.16)

Substitution ofδh̃B(tsd) from (5.10) in (5.16) gives

tsd − h̃B(tsd) = Sl(tsd) (5.17)

Substitution of̃hB(tsd) from (5.11) in (5.17) gives

tsd −
∑

i:tfi+d̃i−p̃i≤tsd

(
tsd − (d̃i − p̃i)− tfi

p̃i
)smax

i − smax = Sl(tsd) (5.18)

As δh̃B(t) is a non-decreasing function oft, it follows from (5.16) that

δh̃B(tfi + d̃i − p̃i) ≤ Sl(tsd) for tfi + d̃i − p̃i ≤ tsd. (5.19)

Consequently, (5.18) can be rewritten as

tsd −
∑

i:δh̃B (tfi+d̃i−p̃i)≤Sl(tsd)

(
tsd − (d̃i − p̃i)− tfi

p̃i
)smax

i − smax = Sl(tsd) (5.20)

Solvingtsd from (5.20) gives the right boundary of the slack determination window(th, tsd),
i.e.,

tsd =

Sl(tsd) + smax −
∑

i:δh̃B (tfi+d̃i−p̃i)≤Sl(tsd)

tfi + d̃i − p̃i

p̃i
smax

i

1−
∑

i:δh̃B (tfi+d̃i−p̃i)≤Sl(tsd)

smax
i

p̃i

(5.21)

It can be seen from the denominator of (5.21) that a solution only exists in one of the fol-
lowing two cases. The first case is if the processor utilization is lower than unity, i.e.,
Ũ < 1 (see also (4.11)). The second case is if the processor utilization equals unity while
the job stream with the highest start time starts outside the slack determination window, i.e.,
max

i
(tfi + d̃i − p̃i) > tsd. In that case, the denominator of (5.21) will be larger than zero as

the job stream with the highest start time is not included in the summation.

Furthermore, it can be seen from the (5.21) that the exact slack determination window cannot
be determined a priori as the local minimum distanceSl(tsd) between the processor demand
h̃(t) and available processor timet within the slack determination window is not known a

120 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

priori.

However, a priori, the local minimum distanceSl(th) at the first deadlineth can be deter-
mined. From the definition of the local minimum distance (see (5.7)) it can be stated that

Sl(th) ≥ Sl(tsd), for th ≤ tsd. (5.22)

As δh̃B(t) is a non-decreasing function oft, the smallestt for which S = Sl(t) is a non-
decreasing function ofSl(t) (see (5.16)). Consequently, the worst case (largest) slack deter-
mination window(th, twc

sd) occurs whenSl(tsd) = Sl(th). In that case the slack determination
procedure (to be presented later) can be stopped if

δh̃B(twc
sd) = Sl(th) (5.23)

Following the same steps as for (5.16), the right boundary of the worst case slack determina-
tion window(th, twc

sd) is given by

twc
sd =

Sl(th) + smax −
∑

i:δh̃B (tfi+d̃i−p̃i)≤Sl(th)

tfi + d̃i − p̃i

p̃i
smax

i

1−
∑

i:δh̃B (tfi+d̃i−p̃i)≤Sl(th)

smax
i

p̃i

(5.24)

Again, a solution fortwc
sd only exists if either the processor utilization is below unity, i.e.,

Ũ < 1, or if the processor utilization equals unity while the job stream with the highest start
time starts outside the worst case slack determination window, i.e.,max

i
(tfi + d̃i− p̃i) > twc

sd .

From the above, the slack determination procedure of Figure 5.1 can be extracted. The de-
picted procedure takes as input a tuple(p̃i, d̃i, s

max
i , tfi) for each GS flowi. The output is

the amount of slack available, i.e.,S. In step 1, the numberni of deadlines processed for
each GS flowi is updated based on the last processed timet. Based on these numbers, the
next timet to be processed is determined in step 2. In step 3, the determined slack is set to
the minimum of its current value andt − h̃(t) (see also (5.7)). In step 4, ifSl > δh̃B(t), the
algorithm returns to step 1. Otherwise, the actually available amount of slackS is set toSl

and the algorithm stops (see also (5.15)). Given a total numbern of GS flows, the procedure
needs an initial amount of at most6n + 2 operations (summation, multiplication, and their
inverse), and at most14n + 4 operations for each processed timet.

5.3.3 Offline-determined slack usage policy

The slack of an EDF scheduler varies with time. However, a priori, a minimum amount
of slackSmin can be calculated that can be consumed once during each busy period. This
minimum amount of slack does not have to be consumed at once, which means that multiple
retransmission can be performed during a single busy period as long as the retransmissions
fit within the determined slackSmin.

5.3. Performing retransmission in slack time 121

• input:

– (p̃i, d̃i, s
max
i , tfi) for each GS flowi, wherep̃i is the poll period,̃di is the relative deadline,

smax
i is the maximum segment size, and wheretfi is the planned time of the first poll for

GS flowi within the busy period in consideration.

• output:

– Available slackS.

a. Let t be the reference time, which is initially set to

t = th = min
i

(d̃i + tfi). (5.25)

b. Let Sl be the determined slack, which is initially set to

Sl = th − h̃(th), (5.26)

where the processor demandh̃(t) is defined as in (5.5).

c. Let ni be the number of deadlines processed for GS flowi, where initially∀i ni = 0.

1. ∀i, if t ≥ (ni + 1)d̃i + tfi thenni = ni + 1.

2. Set the reference time att = min
i

((ni + 1)d̃i + tfi).

3. Set the determined slack to
Sl = min(Sl, t− h̃(t)). (5.27)

4. With δh̃B(t) as defined in (5.10), ifSl > δh̃B(t) then goto step 1.

5. S = Sl.

6. End.

Figure 5.1: Slack determination procedure

The offline-determined slack usage policy is concerned with determining the minimum amount
of slack that can be used once during each busy period. For this, a slack tank with a maxi-
mum size equal to the offline-determined slack, and with a current amountST of available
slack is being used. If a retransmission should be performed for a particular GS flowi, then
that retransmission is only performed if the maximum segment sizesmax

i of GS flowi is not
higher than the current amount of available slackST. Furthermore, the amount of available
slack is each time decreased by the amount of time the EDF scheduler is not serving a new
segment of a GS flow for the first time (i.e., also decreased after a retransmission). As soon
as the EDF scheduler becomes idle, the slack tank is replenished, i.e.,ST = Smin.

In order to determine the minimum slackSmin, the worst case busy period must be consid-
ered. The worst case busy period is the busy period with the lowest local minimum distance
between processor timet and processor demand̃h(t). This implies that the worst case busy

122 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

period is the period with the highest processor demandh̃(t) for given t. From (5.5), it can
be seen that the worst case busy period is the case in which, for each GS flowi, the first poll
within that busy period is planned for reference timet = 0, i.e., tfi = 0 for each GS flowi.
In that case reference timet = 0 becomes a critical instant, which is defined in [LL73] as a
time for which instances of all jobs are simultaneously scheduled.

The maximum size of the slack tankSmin is determined at admission control time using the
procedure of Figure 5.1, while inserting, for each GS flowi, a tuple(p̃i, d̃i, s

max
i , tfi) with

tfi = 0. The returned amount of slack is the maximum size of the slack tankSmin.

Example
Consider a set of four GS flows, of which flow 1 to 4 are described (in slots) by the tuples
(8, 12, 2), (10, 14, 2), (14, 18, 4) and(16, 20, 2) respectively, while the tuple of a GS flowi is
formatted as(p̃i, d̃i, s

max
i). Furthermore, the maximum segment size is 4 slots, i.e.,smax = 4.

From the GS flow descriptions, it can be seen thatd̃i = p̃i + smax for each GS flowi.

It follows from the GS flow descriptions that the processor utilization is given by

Ũ =
4∑

i=1

smax
i

p̃i
(5.28)

=
2
8

+
2
10

+
4
14

+
2
16

≈ 0.86, (5.29)

which is less than unity. As the relative deadline of each GS flowi is given byd̃i = p̃i+smax,
the processor utilization condition of (4.2) is a necessary and sufficient condition and the set
of GS flows is schedulable.

This example considers the case in which retransmissions are to be performed in offline-
determined slack time, which means that a slack tank is to be used, whose maximum size
is given by the offline-determined slackSmin. The offline-determined slack is computed at
admission control time using the procedure given in Figure 5.1. Using Figure 5.2, Figure 5.3,
and Figure 5.4, it will be explained how the available slack is determined.

Figure 5.2 shows the processor demandh̃(t), the processor timet and the workloadw̃(t),
with t expressed in slots. The workload̃w(t) is the amount of transmission time requested in
the period[0, t) by the GS flows in addition to a single maximum segment sizesmax, i.e.,

w̃(t) =
∑

i:tfi≤t

(⌈
t− tfi

p̃i

⌉)
smax

i + smax. (5.30)

As soon as the processor timet becomes equal to the workload̃w(t), the EDF scheduler is
said to be idle as all the polls that are planned beforet are executed. If at the same time
new polls are planned, then that idle period is an infinitely small idle period. With respect to
the case in which retransmissions are performed in idle time, the first time at which retrans-
missions can be performed is implementation specific. By example, if newly planned polls
always have priority above retransmissions than, in the worst case, retransmissions cannot be
performed beforet = 54. On the other hand, a different implementation can make it possible

5.3. Performing retransmission in slack time 123

0 10 20 30 40 50
0

10

20

30

40

50

Reference time t (in slots)

(in
 s

lo
ts

)

t

w(t)

h(t)
~

~

Figure 5.2: Workload and processor demand as a function of time within the worst case busy period.

to perform a retransmission att = 40 or t = 48. This retransmission will not jeopardize the
GS flows as the EDF scheduler already takes into account a maximum size non-GS transmis-
sion for each busy period (see Section 4.2.1.1 in Chapter 4). The period(0, 40) is larger than
each of the four relative deadlines, which implies that waiting until an idle period in order to
perform a retransmission may cause deadlines to be missed.

Figure 5.3 shows the processor demandh̃(t), the processor timet, and the minimum dis-
tanceSl(t) between the processor demand and the processor time in the period(th, t), where
th = 12 is the occurrence time of the first deadline. As can be seen in the figure, the local
minimum distanceSl(t) does not change outside the slack determination window.

As mentioned before, the right boundary of the slack determination window is the time at
which the distanceδh̃B(t) between the processor timet and the upper bound on the processor
demand̃hB(t) equals the local minimum distanceSl(t). From Figure 5.4, it can be seen that
this is the case fort ≈ 32.72. Moreover, it can be seen thatt− Smin > h̃B(t) for t > 32.72
and thus thatt−Smin > h̃(t), which is the basic idea behind the slack determination window.

Summarizing, eight time instances have to be evaluated for determiningSmin. The deter-
mined available amount of slack isSmin = 4, so, depending on the flow, retransmission of
one or two packets can be performed at any time during a busy period.

124 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

0 10 20 30 40 50
0

10

20

30

40

50

Reference time t (in slots)

(in
 s

lo
ts

)

Slack determination window

t

h(t)

S
l
(t)

~

Figure 5.3: Local minimum distance Sl(t) as a function of time.

0 10 20 30 40 50
0

10

20

30

40

50

Reference time t (in slots)

(in
 s

lo
ts

)

Slack determination window

t−Smin

δ
h

B (t)
S

l
 (t)

hB(t)

h(t)

~

~

~

Figure 5.4: Slack determination window for the worst case busy period.

5.3. Performing retransmission in slack time 125

5.3.4 Online-determined slack usage policy

The offline-determined slack usage policy described in the previous section is concerned
with determining the slackSmin that would be available in a worst case busy period. Further-
more, each busy period is treated as a worst case busy period, which means that at most an
amountSmin of slack can be consumed during each busy period, regardless of the actually
available slack.

Fortunately, not every busy period is a worst case busy period, and consequently the actually
available slack may be higher than the offline-determined slack. There are several reasons for
the majority of busy periods not being a worst case busy period. First, the poll periods of the
different GS flows are not necessarily equal, nor are they necessarily synchronized. Hence,
the start time of a busy period is not necessarily a critical instant. Second, if the improved
poller of Chapter 4 is to be used, then, with respect to a GS flowi, the time between the
currently planned poll and the next planned poll is not necessarily equal to the minimum poll
period p̃i. At a particular reference timet = 0, these effects translate into different release
times of the GS flows with respect to the particular reference time. Note that a GS flowi
being released at timet refers to the first poll for GS flowi being planned for timet.

Consider a busy period that starts at reference timet = 0, which means that at least one of
the GS flows is released att = 0. Clearly, if some of the remaining GS flows is released later
thant = 0, then, for the same value oft, the processor demand̃h(t) may be lower than in
the case in whicht = 0 is a critical instant. Consequently, the actually available slack may
be higher thanSmin. Moreover, it will be shown by an example that if att = 0 an amount of
slack has already been consumed, it is possible in some cases that the actually available slack
at reference timet = 0 is still higher thanSmin.

The online-determined slack usage policy is concerned with determining the actually avail-
able slack at the moment slack is needed to be used for retransmission of a GS baseband
packet. In order to determine the currently available slack, the procedure depicted in Fig-
ure 5.1 can be used. For each GS flowi, a tuple(p̃i, d̃i, s

max
i , tfi) is inserted, whiletfi is the

release time of flowi relative to reference timet = 0, which corresponds to the current time.
The value returned by this procedure is the currently available amount of slackS. Note that
a negative release time of a GS flowi means that GS flowi has already been released but not
yet served, which implies that the busy period started before reference timet = 0.

Example
Consider, at a particular timeta (in slots), the same set of GS flows as described in the exam-
ple of Section 5.3.3, while the GS flows 1 to 4 are released att = ta + 2, t = ta − 2, t = ta,
andt = ta + 4 respectively, witht expressed in slots.

As can be seen from the release times, GS flow 2 is released two slots ago without being
served yet. This can be caused by different reasons. For instance, the scheduler could be
busy serving a non-GS segment that started beforet = ta − 2. An other possible reason is
that the EDF scheduler was (or started) serving another GS flow att = ta−2. Finally, it may
be possible that the server was (or started) performing a retransmission of a GS baseband
packet att = ta − 2. If retransmissions where to be performed in offline-determined slack,

126 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

0 10 20 30 40 50
0

10

20

30

40

50

Reference time t (in slots)

(in
 s

lo
ts

)

w(t)

h(t)

~

~

t

Figure 5.5: Workload and processor demand as a function of time.

then the latter reason would have caused the available slack to be decreased with an amount
of at least two slots, meaning that the available offline-determined slack would have been at
mostSmin − 2 = 2 at t = ta.

Let us consider the case in which a retransmission of a segment a GS flow has taken place
at t = ta − 2, while the size of the retransmitted segment is two slots. Clearly, the offline-
determined slack would be at most 2 slots att = ta. Now assume that retransmission of
another GS segment with a maximum size of 4 slots should be performed att = ta. In case
of retransmission if offline-determined slack, this retransmission cannot take place as the re-
maining offline-determined slack is not sufficient.

As mentioned before, the retransmissions in offline-determined slack policy treats each busy
period as a worst case busy period, and consequently assumes, for each busy period, the
availability of the slack that would be available in a worst case busy period. The busy period
described above is, like much of the busy periods, not a worst case busy period as it does not
contain a critical instant. It is expected that the online-determined slack atta will be higher
than the remaining slack in case of the retransmission in offline-determined slack policy.

Figure 5.5 shows the processor demandh̃(t), the processor timet and the workload̃w(t). In
the worst case, for each GS flowi, a poll will be planned each poll period̃pi. In that case,
the EDF scheduler will not become idle before reference timet = 42. In case of the retrans-
mission in idle time policy, the retransmission mentioned above will thus not be performed
beforet = 42. As the period(0, 42) is larger than the maximum relative deadlinemaxi d̃i,
this means that the deadline of the segment to be retransmitted will be missed.

5.3. Performing retransmission in slack time 127

0 10 20 30 40 50
0

10

20

30

40

50

Reference time t (in slots)

(in
 s

lo
ts

)

Slack determination window

t

h(t)

S
l
(t)

~

Figure 5.6: Local minimum distance Sl(t) as a function of time.

Figure 5.6 shows the processor demandh̃(t), the processor timet, and the minimum dis-
tanceSl(t) between the processor demand and the processor time in the period(th, t), where
th = 12 is the occurrence time of the first deadline. As can be seen in the figure, the local
minimum distanceSl(t) does not change outside the slack determination window. Further-
more, it can be seen that the actually available slack isS = 6, which means that the available
slack is enough to perform a retransmission att = 0.

As mentioned before, the right boundary of the slack determination window is the time at
which the distanceδh̃B(t) between the processor timet and the upper bound on the processor
demand̃hB(t) equals the local minimum distanceSl(t). From Figure 5.7, it can be seen that
this is the case fort ≈ 42.77. Moreover, it can be seen thatt− S > h̃B(t) for t > 42.77 and
thus thatt− S > h̃(t), which is the basic idea behind the slack determination window. Note
that the processor demandh̃(t) must be compared with processor timet for eleven values of
reference timet in case the total available amount of slack is to be determined.

We propose three variants of the online-determined slack usage policy that make it possible
to perform the same retransmissions that could be performed in the online-determined slack
usage policy, but which differ in the average number of steps that is needed to be checked.
These variants of the online-determined slack usage policy are theonline-checked slack usage
policy, thehybrid-determined slack usage policy, and thehybrid-checked slack usage policy.

128 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

0 10 20 30 40 50
0

10

20

30

40

50

Reference time t (in slots)

(in
 s

lo
ts

)

δ
h

B(t)

Slack determination window

t−S

hB(t)

h(t)

S
l
(t)

~

~
~

Figure 5.7: Slack determination window.

5.3.5 Online-checked slack usage policy

The online-checked slack usage policy is concerned with determining whether at a partic-
ular time a particular retransmission will fit into the actually available amount slack without
exactly knowing the actually available amount of slack. The advantage of the online-checked
slack usage policy is that the number of time instances to be processed is often less than,
and at most equal to the number of time instances to be processed in case the total amount
of available slack is to be determined. The latter is the case if the required amount of slack
equals the actually available amount of slack.

Determining whether a particular retransmission fits in the currently available slack is done
using the procedure depicted in Figure 5.8. Besides a tuple(p̃i, d̃i, s

max
i , tfi) for each GS

flow i, a requested amount of slackSr is also inserted. The procedure returns a booleanAs,
which is true if the particular retransmission fits into the currently available slack and false
otherwise.

In step (a), the timet to be processed is set equal to the first deadline. Step (b) initializes
the determined slackS by setting it toS = Sl(th) = th − h̃(th) (see also (5.7)). Step (c)
initializes the number of processed deadlines for each GS flow by setting it to zero, i.e.,∀i
ni = 0. The slack availability variableAs is initially set to true in step (d). Step 1 checks
whether the amount of slackS found so far is less than the requested amount of slackSr. If
this is the case, the slack availability variable is set to false, i.e.,As = false, and the algorithm
stops. In step 2, the numberni of deadlines processed for each GS flowi is updated based on
the last processed timet. Based on these numbers, the next timet to be processed is deter-

5.3. Performing retransmission in slack time 129

• input:

– (p̃i, d̃i, s
max
i , tfi) for each GS flowi, wherep̃i is the poll period,̃di is the relative deadline,

smax
i is the maximum segment size, and wheretfi is the planned time of the first poll for

GS flowi within the busy period in consideration.

– Sr requested amount of slack.

• output:

– Slack availabilityAs, which is true ifSr is available, and which is false otherwise.

a. Let t be the reference time, which is initially set to

t = th = min
i

(d̃i + tfi). (5.31)

b. Let Sl be the determined slack, which is initially set to

Sl = th − h̃(th), (5.32)

where the processor demandh̃(t) is defined as in (5.5).

c. Let ni be the number of deadlines processed for GS flowi, where initially∀i ni = 0.

d. Let As be a boolean variable indicating the availability of slackSr. Initially As = true.

1. if Sl < Sr thenAs = false and goto step 6.

2. ∀i, if t ≥ (ni + 1)d̃i + tfi thenni = ni + 1.

3. Set the reference time att = min((ni + 1)d̃i + tfi).

4. Set the determined slack to
Sl = min(Sl, t− h̃(t)). (5.33)

5. With δh̃B(t) as defined in (5.10), ifSr > δh̃B(t) then goto step 1.

6. End.

Figure 5.8: Slack checking procedure

mined in step 3. In step 4, the determined slackSl is set to the minimum of it current value
andt − h̃(t) (see also (5.7)). IfSr > δh̃B(t), the algorithm returns to step 1. Otherwise, the
algorithm stops while denoting that the requested amount of slack is actually available (i.e.,
As = true). The procedure needs an initial amount of at most6n+2 operations (summation,
multiplication, and their inverse), and at most14n + 4 operations for each processed timet.

Example
Consider the same example as in section 5.3.4. Figure 5.9 shows the slack checking window
in case it is to be checked whether an amount of slackSr = 4 is available or not. As soon as
δh̃B(t) becomes higher thanSr, it can be seen thatt−Sr > h̃B(t) and thus thatt−Sr > h̃(t).

130 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

0 10 20 30 40 50
0

10

20

30

40

50

Reference time t (in slots)

(in
 s

lo
ts

)

Slack checking window

t−S
r

δ
h

B (t)
S

l
 (t)hB (t)

h(t)

~

~

~

S
r

Figure 5.9: Slack checking window.

Consequently, the right boundary of the slack checking window is given by the timet = tscw
at whichδh̃B(t) = Sr, i.e.,

tscw =

Sr + smax −
∑

i:δh̃B (tfi+d̃i−p̃i)≤Sr

tfi + d̃i − p̃i

p̃i
smax

i

1−
∑

i:δh̃B (tfi+d̃i−p̃i)≤Sr

smax
i

p̃i

(5.34)

≈ 28.41. (5.35)

Note that if it is to be checked whether a retransmission of a GS segment with a maximum
size of four slots fits within the available slack, then the processor demandh̃(t) must be
compared with processor timet for only six values of reference timet instead of eleven for
the online-determined slack usage policy.

5.3.6 Hybrid-checked slack usage policy

As explained in the previous sections, at least a minimum amountSmin of slack is avail-
able at the beginning of each busy period. This amount decreases during the busy period
for each retransmission of a GS segment. In terms of calculations, the online-checked slack
usage policy can be improved by adding the main idea behind the offline-determined slack
usage policy in the following way.

5.3. Performing retransmission in slack time 131

The slack checking procedure of Figure 5.8 can be improved by maintaining a slack tank,
which denotes the least available amount of slack during a busy period. During admission
control, the minimum amountSmin that is available during each busy period is determined.
Furthermore, the hybrid-checked slack usage policy behaves like the offline-determined slack
usage policy in the sense that a retransmission can always be performed if the slack tank
denotes the availability of the required amount of slack, while the slack tank is replenished
each time the EDF scheduler becomes idle. If the amount of slack denoted by the slack
tank is insufficient for performing a desired retransmission in, then the hybrid-checked slack
usage policy behaves like the online-checked slack usage policy, i.e., it is checked whether
the desired retransmission can be performed in the actually available slack.

5.3.7 Hybrid-determined slack usage policy

The hybrid-determined slack usage policy is a combination of the offline-determined
slack usage policy and the online-determined slack usage policy. As soon as a retransmission
of a particular GS segment is to be performed, it is checked whether that particular GS seg-
ment fits into the amount of slack denoted by the slack tank. In case the denoted amount of
slack is insufficient for performing the desired retransmission in, the actually available slack
is determined and the retransmission takes place if the actually available slack is sufficient for
performing the desired retransmission in. Subsequently, the value of the slack tank is adjusted
taking into account the determined actually available slack and the performed retransmission
if any.

As soon as the EDF scheduler becomes idle again, the slack tank is set to the offline-determined
amount of slackSmin if that amount is larger than the amount of slack currently denoted by
the slack tank. Furthermore, the slack tank is adjusted (decreased) proportional to the pro-
cessor timet, unless for new transmission of GS segments. However, during an idle period,
the slack tank is never decreased below the offline-determined amount of slackSmin.

An overview of the different slack usage policies is given in Table 5.1.

Policy Description

offline-determined slack usage
the minimum amount of slack per busy period is de-
termined during admission control; this amount of
slack can be consumed during each busy period.

online-determined slack usage
whenever an amount of slack is required, the actually
available amount of slack is determined

online-checked slack usage
whenever an amount of slack is required, it is checked
whether the required amount of slack is not higher
than the actually available amount of slack

hybrid-determined slack usage
combination of the offline-determined slack usage
policy and the online-determined slack usage policy

hybrid-checked slack usage
combination of the offline-determined slack usage
policy and the online-checked slack usage policy

Table 5.1: Overview of the different slack usage policies.

132 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

5.4 Simulation studies

This section presents simulation studies of the variable-interval poller in a non-ideal ra-
dio environment. The first simulation scenario compares the variable-interval poller with the
fixed-interval poller with respect to theresidual packet drop ratioin case retransmissions are
performed in idle time. The residual packet drop ratio is the ratio of the number of GS L2CAP
packets that are not received by the corresponding receivers to the total number of generated
GS L2CAP packets. The second simulation scenario presents, in case of the variable-interval
poller, a comparison between different slack usage policies with respect to the residual packet
drop ratio and with respect to the number of checked time instances per retransmission at-
tempt. The third simulation scenario also presents, in case of the variable-interval poller, a
comparison between different slack usage policies with respect to the residual packet drop
ratio. However, the difference with the second scenario is that a high processor utilization is
now caused by accepting more flows instead of making the delay requirements tighter. The
fourth simulation scenario presents a comparison between an SCO channel and the variable-
interval poller in case of the hybrid-checked slack usage policy.

5.4.1 Description of the Simulation environment

The simulation tool used for the evaluations is Network Simulator (ns2) [ns2] with Blue-
tooth extensions [Nie00] from Ericsson Switchlab, together with our ns2 implementations
of the predictive fair poller (see Chapter4), the different slack usage policies defined in sec-
tion 5.3, and the two-state DTMC Bluetooth bit error model defined in section 5.4.1.1.

5.4.1.1 Bluetooth bit error model

Bluetooth is a wireless access technology, which is inherently subject to transmission
errors because of a variety of reasons. Some of them are

• The quality of the link (e.g. bit error rate) between two Bluetooth nodes strongly
depends on the distance between these nodes. Furthermore, the quality of the link is
adversely affected by shadowing and (multipath) fading.

• Bluetooth uses a frequency hopping mechanism where each transmission takes place
in one of the 79 (23 in some countries) available frequencies. The frequency hopping
sequence is a pseudo-random one, and is unique for a piconet. Nonetheless, multiple
piconets may sometimes perform a transmission using the same frequency as the num-
ber of possible frequencies is relatively small. Piconets in the vicinity of each other
may therefore suffer from collisions.

• Bluetooth operates in the 2.4 GHz ISM (Industrial Scientific Medical) band, which for
instance the IEEE 802.11 access technology also operates in. Hence, Bluetooth nodes
suffer from possible interference of IEEE 802.11 nodes.

• Bluetooth is a wireless access technology that has potential applications in an in-home
environment. The microwave is an in-home device that transmits energy (noise) in part
of the ISM band.

5.4. Simulation studies 133

g
BERg

b
BERb

Pgb

Pbg

1-Pbg1-Pgb

Figure 5.10: Two-state Discrete-Time Markov Chain (DTMC).

Determining how the reasons mentioned above translate into the actual error model is a com-
plex task, which also strongly depends on the assumptions made for each of the reasons.
However, especially from the last two reasons, it can be concluded that the packet errors will
probably be bursty. As the distance between two wireless nodes is determining for the link
quality, it is decided to model the link errors independently for each master slave pair.
One of the goals of this section is to investigate the influence of the burstiness of the packet
errors on the error recovery mechanisms described in this chapter. For this, it suffices to come
up with an error model that can be set at different burstiness levels and at different mean bit
error ratios, rather than trying to come up with a model that incorporates the reasons men-
tioned above in a lot of detail.

The radio link of each master slave pair is modeled as a two-state Discrete-Time Markov
Chain (DTMC) [Ros96] as depicted in Figure 5.10. The ”g” state is the good state, which
is associated with a low bit error ratio1 BERg, while the ”b” state is the bad state, which is
associated with a high bit error ratioBERb > BERg. The transition probabilities from the
”g” state to the ”b” state and from the ”b” state to the ”g” state are given byPgb andPbg,
respectively. The transitions take place at each slot boundary, while it is assumed that the bit
error ratio of a multi-slot packet is given by the bit error ratio in its first slot. The main idea
behind this assumption is the fact that the whole baseband packet is transmitted using the RF
hop frequency of its first slot.

The different error recovery mechanisms will be evaluated for different average bit error ra-
tios and different burstiness levels. As can be seen in Figure 5.10, there are four degrees of
freedom in the DTMC. It is decided to fix the bit error ratiosBERg andBERb corresponding
to the two states and to express the transition probabilitiesPbg andPgb as a function of the
average bit error ratioBER and the coefficient of autocorrelationρX , which is a measure of
burstiness. These will be defined in this section.

Let Xi be the bit error ratio in sloti, i.e., Xi = BERg if slot i is in the good state, and
Xi = BERb if slot i is in the bad state. Furthermore, let us first introducePg andPb, which
are respectively the probability of a slot being in the good state and the probability of a slot
being in the bad state. The probability of a slot being in the good state is defined as [Ros96]

1In the literature, the a priori bit error probability of a wireless link is referred to as bit error ratioBER.

134 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

Pg = P (Xi = BERg) =
Pbg

Pgb + Pbg
, (5.36)

while the probability of a slot being in the bad state is defined as

Pb = P (Xi = BERb) =
Pgb

Pgb + Pbg
. (5.37)

The probabilities of (5.36) and (5.37) can be interpreted as the steady state probabilities if
the Markov chain is irreducible and aperiodic. The two-state discrete-time Markov chain is
irreducible if

Pgb > 0 and Pbg > 0, (5.38)

while the two-state discrete-time Markov chain is aperiodic if

Pgb < 1 and Pbg < 1. (5.39)

As mentioned before, the good state is associated with the lower bit error ratioBERg, while
the bad state is associated with the higher bit error ratioBERb. Consequently, the average
bit error ratio is given by

BER = E[Xi] = PgBERg + PbBERb. (5.40)

By substitution ofPg andPb from (5.36) and (5.37) respectively in (5.40), the average bit
error ratio can be written as a function of the transition probabilities, i.e.,

BER =
PbgBERg + PgbBERb

Pgb + Pbg
. (5.41)

Let us now introduce the coefficient of autocorrelationρX of the Markov chain, which cor-
responds to the correlation between the bit error ratio in two subsequent slots, which can be
seen as a measure of burstiness. The coefficient of autocorrelation of the Markov chain is
given by [YG99]

ρX =
Cov[Xi, Xi+1]√
Var[Xi]Var[Xi+1]

=
Cov[Xi, Xi+1]

Var[Xi]
, (5.42)

where

Var[Xi] = E[X2
i]− E[Xi]2

= (PgBER2
g + PbBER2

b)− (PgBERg + PbBERb)2, (5.43)

and

Cov[Xi, Xi+1] = E[XiXi+1]− E[Xi]E[Xi+1]
= (Pg(1− Pgb)BER2

g + PgPgbBERgBERb + Pb(1− Pbg)BER2
b +

PbPbgBERbBERg)− (PgBERg + PbBERb)2 (5.44)

5.4. Simulation studies 135

By substitution ofPg andPb from (5.36) and (5.37) respectively in (5.43), the variance of
the Markov chain can be written as a function of the transition probabilities, i.e.,

Var[Xi] =
PbgPgb

(Pgb + Pbg)2
(BERb − BERg)2. (5.45)

By substitution ofPg andPb from (5.36) and (5.37) respectively in (5.44), the covariance of
the Markov chain can be written as a function of the transition probabilities, i.e.,

Cov[Xi, Xi+1] =
PgbPbg

(Pgb + Pbg)2
(1− Pgb − Pbg)(BERb − BERg)2 (5.46)

By substitution ofCov[Xi, Xi+1] from (5.46) andVar[Xi] from (5.45) in (5.42), the coeffi-
cient of autocorrelation of the Markov chain can be written as

ρX = 1− Pgb − Pbg (5.47)

It can be seen from (5.47) and Figure 5.10, thatPgb = 1 − Pbg in an uncorrelated Markov
chain, i.e., whenρX = 0. Consequently, the probability of moving from one state (e.g. state
”g”) to a different one (e.g. state ”b”) is the same as the probability of being in that different
state (e.g. state ”b”) and staying in that different state (e.g. state ”b”).

A positively fully correlated system, i.e.,ρX = 1, implies thatPgb = Pbg = 0, which means
that the next state is alway the same as the current state. On the other hand, a negatively fully
correlated system, i.e.,ρX = −1, implies thatPgb = Pbg = 1, which means that the next
state is always different from the current state.

The transition probabilitiesPgb andPbg can be written as a function of the average bit error
ratio, the coefficient of autocorrelation of the Markov chain, and the (fixed) bit error ratios
of the ”g” state and the ”b” state by solving them from (5.41) and (5.47). In that case, the
transition probability from the ”g” state to the ”b” state will be given by

Pgb =
(1− ρX)(BER − BERg)

BERb − BERg
, (5.48)

while the transition probability from the ”b” state to the ”g” state will the be given by

Pbg =
(1− ρX)(BERb − BER)

BERb − BERg
. (5.49)

In order to comply with (5.38), the average bit error ratio must comply with

BER > BERg and BER < BERb (5.50)

In order to comply with (5.39), the average bit error ratio must comply with

BER <
BERb − ρXBERg

1− ρX
and BER >

BERg − ρXBERb

1− ρX
(5.51)

136 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

From (5.50) and (5.51) it can be found that the average bit error rate should comply with

max(BERg,
BERg − ρXBERb

1− ρX
) < BER < min(BERb,

BERb − ρXBERg

1− ρX
) (5.52)

The simulations in this chapter will be performed for different values of the average bit error
ratioBER and for different values of the coefficient of autocorrelationρX . Each combination
of BER andρX will be checked for compliance to (5.52) and translated to the transition prob-
abilities (using (5.48) and (5.49)) of the discrete-time Markov chain that models the bit errors.

5.4.1.2 Translation of bit errors to packet errors

The bit errors within a received baseband packet are assumed to occur independently of
each other and with a probabilityp (referred to as bit error ratio in the previous section) that
depends on the state of the DTMC (described in Section 5.4.1.1) in which the transmission of
that packet is started. Using this information, the bit error probability can be translated into
a baseband packet error probability, which depends on the baseband packet type and on the
size of payload.

A baseband packet is assumed to be correctly received if the sync word, the packet header
and the payload are correctly received. The sync word is a 64-bit code word that is part of
the access code, which is part of each baseband packet. The sync word is allowed to contain
at most 13 bit errors, which implies that, given a bit error probabilityp , the probabilityPsw

of a sync word being erroneously received is

Psw(p) =
64∑

n=14

(
64
n

)
(1− p)64−npn. (5.53)

The packet header consists of 18 information bits including the header error correction (HEC),
and is protected with a rate 1/3 FEC. Consequently, the resulting 54-bit packet header is as-
sumed to be received correctly as long as no more than one bit error occurs in each 3-bit block
(1 user data bit plus 2 parity bits). Hence, given a bit error probabilityp, the probabilityPh

of a packet header being received erroneously is

Ph(p) = 1−

(
1∑

n=0

(
3
n

)
(1− p)3−npn

)18

. (5.54)

Besides on the bit error probabilityp, the probability of the payload being received erro-
neously depends on both the packet type and the size of payload. In an ACL link, a classifi-
cation of packet types can be made based on the error correction provided. The DH1, DH3,
and DH5 packets are the Data - High rate packets, which contain a 16-bit cyclic redundancy
check (CRC) code but that do not provide forward error correction (FEC). Besides the 16-
bit CRC code, the payload of the DH packets consists of the user data and an 8-bit payload
header for the DH1 packet type or a 16-bit payload header for the DH3 and DH5 packets.
The payload of the DH packets is discarded as soon as a single bit error occurs. Hence, given
an amount ofsu (in bits) of user data and a bit error probabilityp, the probabilityPDH1p of

5.4. Simulation studies 137

the payload of a DH1 (at most 216-bit payload) packet being received erroneously is given
by

PDH1p(p, su) = 1− (1− p)su+24 , 1 ≤ su ≤ 216. (5.55)

Furthermore the probabilityPDH3p of the payload of a DH3 (at most 1464-bit payload) packet
being received erroneously is given by

PDH3p(p, su) = 1− (1− p)su+32 , 1 ≤ su ≤ 1464, (5.56)

while the probabilityPDH5p of the payload of a DH5 (at most 2714-bit payload) packet being
received erroneously is given by

PDH5p(p, su) = 1− (1− p)su+32 , 1 ≤ su ≤ 2714. (5.57)

The DM1, DM3, and DM5 packets are the Data - Medium rate packets, in which the data
plus a 16-bit CRC code are coded with a rate 2/3 FEC, which adds 5 parity bits to each 10
subsequent user data bits2. Besides the 16-bit CRC code, the payload of the DM packets
consists of the user data and a 8-bit payload header for the DM1 packet type or a 16-bit
payload header for the DM3 and DM5 packets. The payload of a DM packet is discarded as
soon as more than one bit error occurs in one of the 15-bit blocks (10 user data bits plus 5
parity bits). Hence, given an amount ofsu (in bits) of user data and a bit error probabilityp,
the probabilityPDM1p of the payload of a DM1 (at most 136 bits of user data) packet being
received erroneously is given by

PDM1p(p, su) = 1−

(
1∑

n=0

(
15
n

)
(1− p)15−npn

)d su+24
10 e

, 1 ≤ su ≤ 136. (5.58)

Furthermore, the probabilityPDM3p of the payload of a DM3 (at most 968 bits of user data)
packet being received erroneously is given by

PDM3p(p, su) = 1−

(
1∑

n=0

(
15
n

)
(1− p)15−npn

)d su+32
10 e

, 1 ≤ su ≤ 968, (5.59)

while the probabilityPDM5p of the payload of a DM5 (at most 1792-bit payload) packet
being received erroneously is given by

PDM5p(p, su) = 1−

(
1∑

n=0

(
15
n

)
(1− p)15−npn

)d su+32
10 e

, 1 ≤ su ≤ 1792. (5.60)

In an SCO link, and given the class of high quality voice (HV) packets, a classification of
packet types based on the error correction provided can be made. While none of the HV

2In case the number of user data bits is not a multiple of 10, tail bits will be appended as the forward error encoder
operates with information segments of 10 bits

138 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

packets contains a CRC code (no retransmission), the HV3 packet type contains at most 30
information bytes (see also footnote on Page 108) and no FEC, and each bit error is passed to
the upper layers as is. Given an amountsu (in bits) of user data and a bit error probabilityp,
the probabilityPHV3p of the payload of an HV3 packet (at most 240 bits of user data) being
received erroneously is given by

PHV3p(p, su) = 1− (1− p)su , 1 ≤ su ≤ 240. (5.61)

The HV2 packet type contains at most 20 information bytes and is protected with a rate 2/3
FEC. Consequently, the HV2 packet can be received correctly as long as no more than one
bit error occurs in each 15-bit block (10 user data bits plus 5 parity bits). Given an amount
su (in bits) of user data and a bit error probabilityp, the probabilityPHV2p of the payload of
an HV2 (at most 160 bits of user data) packet being passed erroneously to the upper layers is
given by

PHV2p(p, su) = 1−

(
1∑

n=0

(
15
n

)
(1− p)15−npn

)d su
10 e

, 1 ≤ su ≤ 160. (5.62)

The HV1 packets contains 10 information bytes, which are protected with a rate 1/3 FEC.
Consequently the packet is passed error free as long as there is no more than one bit error in
each of the 3-bit blocks (1 user data bit plus 2 parity bits). Given an amountsu (in bits) of
user data and a bit error probabilityp, the probabilityPHV1p of the payload of an HV1 (at
most 80 bits of user data) packet being passed erroneously to the upper layers is given by

PHV1p(p, su) = 1−

(
1∑

n=0

(
3
n

)
(1− p)3−npn

)su

, 1 ≤ su ≤ 80. (5.63)

In an ACL link, a baseband packet is passed (free of errors) to the upper layers if the sync
word, the packet header, and the payload are received correctly. For instance, the probability
PDM3 that a DM3 baseband packet cannot be passed (free of errors) to the upper layers is

PDM3(p, su) = 1− ((1− Psw(p))(1− Ph(p))(1− PDM3p(p, su))), 1 ≤ su ≤ 968.

(5.64)

A correctly received packet header contains information that is needed to identify the sender,
the type of the transmission, information needed to perform flow control, information needed
to perform retransmissions (if needed), and information needed to filter out duplicate trans-
missions. Furthermore, a correctly received packet header serves as an implicit poll (if re-
ceived by a slave) or as a reply (if received by the master) to a poll. If the packet header or the
sync word is erroneously received, then the packet header will be discarded. Consequently,
the probability of a packet header not being processed is

PheaderNoProc(p) = 1− ((1− Psw(p))(1− Ph(p))) . (5.65)

5.4. Simulation studies 139

In an SCO link, a baseband packet is passed free of errors to the upper layers only if the
sync word, the packet header, and the payload are correctly received. Otherwise, the packet
is either passed with errors in case both the sync word and the packet header are correctly
received, or the packet is not passed at all in case the sync word and/or the packet header are
not correctly received. For instance, the probability that a HV2 baseband packet cannot be
passed free of errors to the upper layers is

PHV2(p, su) = 1− ((1− Psw(p))(1− Ph(p))(1− PHV2p(p, su))), 1 ≤ su ≤ 160.

(5.66)

5.4.2 Scenario I:
Comparison between the fixed-interval poller and the variable-interval poller

5.4.2.1 Purpose of the simulation

According to Chapter 4, delay guarantees are met by both the fixed-interval poller and
the variable-interval poller. However, as the variable-interval poller is saving more bandwidth
than the fixed-interval poller, it is expected that the variable-interval poller is able to perform
more retransmissions, which should lead to a lower residual packet drop ratio.

The purpose of this simulation scenario is to investigate, in case retransmission are performed
in idle time, whether the variable-interval poller is able to achieve a lower residual packet drop
ratio than the fixed-interval poller. Note that the flush timeout prevents the transmission of
packets whose delay guarantee would not be met otherwise. Hence, the delay guarantees of
packets that are not dropped are met. For illustration purposes, the residual packet drop ratio
in case no retransmission are performed will also be shown.

5.4.2.2 Description of the simulation scenario

In this scenario, simulations are performed using the simulation setup of Section 4.3.1.2
(see also Figure 4.3). In addition to the assumptions of Section 4.3.1.2, the following as-
sumptions are made:

• The channel of each master-slave pair behaves as a two-state DTMC withBERg =
10−5 andBERb = 10−2, whereasρX andBER are varied in the experiments. The
chosen values forBERg andBERb make it possible to vary the average bit error ratio
between10−5 and10−2.

• Retransmissions of the GS traffic is only performed if the system is idle, i.e., only if
there are no polls (for GS flows) of which the planned time has already arrived but
which are not (yet) completely executed.

5.4.2.3 Simulation results

As mentioned in Section 4.2.2, the fixed-interval poller plans polls more often than nec-
essary. These extra polls can be used by the polled GS flow for retransmission of the GS

140 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

packets that are not correctly received. However, as the assignment of these extra polls to
GS flows is independent of the need (following a transmission error) for them, it is expected
that the variable-interval poller will achieve a lower residual packet drop ratio than the fixed-
interval poller. The reason for this is that the variable-interval poller assigns the polls that it
considered as being unnecessary to the GS flows that actually need them.

Figure 5.11 to Figure 5.16 show the total residual packet drop ratio as a function of the av-
erage bit error ratioBER for different delay requirements and different burstiness levels.
Based on these figures, some observations can be made. Compared with the case in which
no retransmissions take place, both the fixed-interval poller and the variable-interval poller
achieve a significantly lower residual packet drop ratio.

In case of very tight delay requirements (dB = 23.5 ms, Ũ ≈ 0.985) or very loose delay
requirements (dB = 43.75 ms,Ũ ≈ 0.486), the fixed-interval poller and the variable-interval
poller achieve comparable residual packet drop ratios. For very loose delay requirements,
this comparable residual packet drop ratio is caused by the fact that both the fixed-interval
poller and the variable-interval poller have enough idle time to perform the retransmissions
in. For very tight delay requirements, this is caused by the fact that the variable-interval
poller is not able to create much additional space for retransmission. The reason for this is
that the requested rateR is much higher than the data raterd, and thus that most polls do
not result in baseband packets containing data, which are needed for postponing next polls
(see section 4.2.2). In case of moderate delay requirements (dB = 35 ms, Ũ ≈ 0.622),
the variable-interval poller achieves a lower residual packet drop ratio that the fixed-interval
poller, which conforms the expectation.

In case of bursty packet errors, the residual packet drop ratio is up to one order of magnitude
higher than in case of independent packet errors. The reason for this is that retransmissions
of packets will often experience the same channel conditions as the original packet.

5.4.2.4 Conclusions of scenario I

Except for very tight delay requirement and/or low utilization, the variable-interval poller
achieves lower residual packet drop ratios than the fixed-interval poller. Furthermore, it is
shown in Chapter 4 that the variable-interval poller makes it possible to achieve higher best
effort throughput than with the fixed-interval poller. These two aspects make the variable
interval poller superior to the fixed-interval poller.

5.4. Simulation studies 141

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

variable interval poller
fixed interval poller
without retranmissions

Figure 5.11: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 23.5 ms in case of independent packet errors (ρX = 0).

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

variable interval poller
fixed interval poller
without retranmissions

Figure 5.12: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 23.5 ms in case of highly dependent packet errors (ρX = 0.7).

142 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

variable interval poller
fixed interval poller
without retranmissions

Figure 5.13: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 35 ms in case of independent packet errors (ρX = 0).

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

variable interval poller
fixed interval poller
without retranmissions

Figure 5.14: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 35 ms in case of highly dependent packet errors (ρX = 0.7).

5.4. Simulation studies 143

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

variable interval poller
fixed interval poller
without retranmissions

Figure 5.15: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 43.75 ms in case of independent packet errors (ρX = 0).

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

variable interval poller
fixed interval poller
without retranmissions

Figure 5.16: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 43.75 ms in case of highly dependent packet errors (ρX = 0.7).

144 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

5.4.3 Scenario II: Comparison of the different retransmission policies

5.4.3.1 Purpose of the simulation

The purpose of this simulation scenario is to evaluate the different retransmission policies
(see Table 5.1) if used by the variable-interval poller. First, we investigate whether slack
usage leads to a lower residual packet drop ratio. For this, we compare the residual packet
drop ratios achieved in case of each of the retransmission policies. Second, we compare the
average number of evaluated time instances per retransmission attempt for the online-checked
slack usage policy, the online-determined slack usage policy, the hybrid-checked slack usage
policy, and the hybrid-determined slack usage policy. These policies differ in the number of
evaluated time instance per retransmission attempt, while leading to the same residual packet
drop ratio.

5.4.3.2 Description of the simulation scenario

In this scenario, simulations are performed using again the simulation setup of Sec-
tion 4.3.1.2 (see also Figure 4.3). In addition to the assumptions of Section 4.3.1.2, the
following assumptions are also made:

• The channel of each master-slave pair behaves as a two-state DTMC withBERg =
10−5 andBERb = 10−2, whereasρX andBER are varied in the experiments.

• For the comparison of the residual packet drop ratio, retransmissions of the GS traffic
are performed, depending on the retransmission policy, if the system is idle, in offline-
determined slack time, or in hybrid-checked slack time.

• For the comparison of the average number of evaluated time instances per retransmis-
sion attempt (Γ), retransmissions of the GS traffic are performed, depending on the
retransmission policy, in online-checked slack time, in online-determined slack time,
in hybrid-checked slack time, or in hybrid-determined slack time.

5.4.3.3 Simulation results

Figure 5.17 to Figure 5.22 show the total residual packet drop ratio as a function of the
average bit error ratioBER for different delay requirements and different burstiness levels.
Based on these figures, some observations can be made.

In case of the tight delay requirement ofdB = 23.5 ms, the same total residual packet drop
ratio is achieved for the different retransmission policies. The reason for this is twofold. First
the utilization is high (̃U ≈ 0.985), meaning that the amount of idle time is scarce. Second,
the requested rateR is much higher than the data raterd, and thus most polls do not result
in baseband packets containing data, which are needed for postponing next polls and thus
for creating additional idle time. The slack time using policies can be looked at as idle time
moving policies. Hence, as idle time is scarce, comparable total residual packet drop ratios
are achieved under the different retransmission policies.

5.4. Simulation studies 145

For the remaining cases (dB = 35 ms anddB = 43.75 ms), the offline-determined slack
usage policy causes a slightly lower residual packet drop ratio to be achieved compared with
the case in which retransmission are performed in idle time. Furthermore, the hybrid-checked
slack usage policy causes a slightly lower residual packet drop ratio to be achieved compared
with the case in which retransmission are performed in offline-determined slack time.

In case of bursty packet errors, the residual packet drop ratio is higher than in case of indepen-
dent packet errors. This can be seen by comparing Figure 5.17 with Figure 5.18, Figure 5.19
with Figure 5.20, or Figure 5.21 with Figure 5.22. Furthermore, the difference in residual
packet drop ratio between the different slack usage policies becomes small in case of bursty
packet errors. The reason for this is that retransmissions of packets will often experience the
same channel conditions as the original packets.

Figure 5.23 to Figure 5.28 show the average number of evaluated time instances per retrans-
mission attempt (Γ) for the online-checked slack usage policy, the online-determined slack
usage policy, the hybrid-checked slack usage policy, and the hybrid-determined slack usage
policy. The average number of evaluated time steps increases for increasing utilization (see
also (5.24)). This can be seen by comparing Figure 5.23 with Figure 5.25 and Figure 5.27,
or Figure 5.24 with Figure 5.26 and Figure 5.28. Furthermore, it can be seen that the average
number of evaluated time instances per retransmission attempt needed by the slack checking
policies is less than the average number of evaluated time instances per retransmission at-
tempt needed by their slack determining counterparts.

The average number of evaluated time instances per retransmission attempt (Γ) increases for
increasing average bit error ratio (BER). The reason for this is that in case of a higherBER,
multiple retransmission attempts will be made during a single busy period. Furthermore, the
more the retransmissions took place during a busy period, the closer the deadlines of the
planned GS polls, and thus the larger the slack determination/checking (see effect of smaller
tfi ’s in (5.21) and (5.34)). An exception to the aforementioned increasingΓ occurs when
the slack checking policies are used in case of a high utilization (see Figure 5.23 and Fig-
ure 5.24). The reason for this is that the slack checking algorithm stops as soon as it finds out
that the requested slack is not available (see step 1 in Figure 5.8).

The difference between the average number of evaluated time instances per retransmission
attempt in case of bursty packet errors and in case of independent packet errors in negligible.
The reason for this is that packet error burstiness has a negligible effect on the number of
retransmission attempts per busy period.

5.4.3.4 Conclusions of scenario II

From the simulation results it can be concluded that, w.r.t. residual packet drop ratio,
the different retransmission policies perform equally well in case of high utilization. In case
of moderate and low utilization, and especially in case of lowly correlated packet errors, a
slightly lower residual packet drop ratio is achieved when following the offline-determined
slack usage policy instead of performing retransmission in idle-time. A slight additional de-
crease in the residual packet drop ratio can be achieved by following one of the online/hybrid-

146 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

determined/checked slack usage policies.

Given the extra cost in terms of computation, the usability of the online/hybrid retransmission
policies in this particular context can be argued against. However, if one of the online/hybrid
retransmission policies is to be used, the use of the hybrid-checked slack usage policy is
recommended because of its lower average number of evaluated time instances per retrans-
mission attempt.

5.4. Simulation studies 147

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

idle time usage
offline−determined slack usage
hybrid−checked slack usage

Figure 5.17: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 23.5 ms in case of independent packet errors (ρX = 0).

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

idle time usage
offline−determined slack usage
hybrid−checked slack usage

Figure 5.18: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 23.5 ms in case of highly dependent packet errors (ρX = 0.7).

148 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

idle time usage
offline−determined slack usage
hybrid−checked slack usage

Figure 5.19: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 35 ms in case of independent packet errors (ρX = 0).

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

idle time usage
offline−determined slack usage
hybrid−checked slack usage

Figure 5.20: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 35 ms in case of highly dependent packet errors (ρX = 0.7).

5.4. Simulation studies 149

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

idle time usage
offline−determined slack usage
hybrid−checked slack usage

Figure 5.21: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 43.75 ms in case of independent packet errors (ρX = 0).

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

idle time usage
offline−determined slack usage
hybrid−checked slack usage

Figure 5.22: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 43.75 ms in case of highly dependent packet errors (ρX = 0.7).

150 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

10
−4

10
−3

10
−2

0

5

10

15

20

25

30

35

40

BER

Γ

online−determined time usage
online−checked slack usage
hybrid−determined slack usage
hybrid−checked slack usage

Figure 5.23: Average number of processed time instances per retransmission attempt (Γ) as a function
of average bit error ratio (BER) for a delay requirement of 23.5 ms in case of independent packet errors
(ρX = 0).

10
−4

10
−3

10
−2

0

5

10

15

20

25

30

35

40

BER

Γ

online−determined time usage
online−checked slack usage
hybrid−determined slack usage
hybrid−checked slack usage

Figure 5.24: Average number of processed time instances per retransmission attempt (Γ) as a function
of average bit error ratio (BER) for a delay requirement of 23.5 ms in case of highly dependent packet
errors (ρX = 0.7).

5.4. Simulation studies 151

10
−4

10
−3

10
−2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BER

Γ

online−determined time usage
online−checked slack usage
hybrid−determined slack usage
hybrid−checked slack usage

Figure 5.25: Average number of processed time instances per retransmission attempt (Γ) as a function
of average bit error ratio (BER) for a delay requirement of 35 ms in case of independent packet errors
(ρX = 0).

10
−4

10
−3

10
−2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BER

Γ

online−determined time usage
online−checked slack usage
hybrid−determined slack usage
hybrid−checked slack usage

Figure 5.26: Average number of processed time instances per retransmission attempt (Γ) as a function
of average bit error ratio (BER) for a delay requirement of 35 ms in case of highly dependent packet
errors (ρX = 0.7).

152 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

10
−4

10
−3

10
−2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BER

Γ

online−determined time usage
online−checked slack usage
hybrid−determined slack usage
hybrid−checked slack usage

Figure 5.27: Average number of processed time instances per retransmission attempt (Γ) as a function
of average bit error ratio (BER) for a delay requirement of 43.75 ms in case of independent packet errors
(ρX = 0).

10
−4

10
−3

10
−2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BER

Γ

online−determined time usage
online−checked slack usage
hybrid−determined slack usage
hybrid−checked slack usage

Figure 5.28: Average number of processed time instances per retransmission attempt (Γ) as a function
of average bit error ratio (BER) for a delay requirement of 43.75 ms in case of highly dependent packet
errors (ρX = 0.7).

5.4. Simulation studies 153

S5

S1 M

S2

S4

S6

S7

S3

flow 8

flow 7

flow 1

GS flow

BE flow

flo
w

2

fl
o
w

3

flo
w

5

flo
w

 4

flow
6

Figure 5.29: Simulation setup of scenario III

5.4.4 Scenario III:
Comparison of the different retransmission policies for higher number of
flows

5.4.4.1 Purpose of the simulation

In scenario I and II, the utilization is increased by making the delay requirementdB

tighter (i.e., lower). As a consequence, the resulting requested service rateR, is also higher.
In case of a delay requirement ofdB = 23.5 ms, the requested service rate is even twice the
data rate. Consequently, many GS polls will not result in a GS segment being transmitted,
which is needed by the variable-interval poller to create extra idle time.

The purpose of this simulation scenario is to show, in case of high utilization where the
requested service rate is not significantly higher than the data rate, that the variable-interval
poller is able to create extra idle time, which can be used for retransmissions.

5.4.4.2 Description of the simulation scenario

In this scenario, simulations are performed using the simulation setup of Figure 5.29,
while making the following assumptions:

• Seven slaves and a master form a piconet, while flows are set up as depicted in the
figure.

• Flows 1 to 6 are GS flows, which the same delay bound ofdB = 40 ms is requested
for, while flows 7 and 8 are BE flows (background traffic).

• For the GS flows, the packet sizes are uniformly distributed with a minimum size of
144 bytes, and a maximum size of 176 bytes, i.e.,mi = 144 bytes andMi = 176 bytes
for each GS flowi.

• For the BE flows, the packet sizes are of a fixed size of 176 bytes.

• The time between two consecutive packet generations of the same GS flow equals the
size of the first packet divided by a data rate of 8 kbytes/s (64 kbps). The resulting
average time interval between two packet generations of the same GS flow is 20 ms.

154 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

• The sources of the BE flows generate packets with fixed intervals at a data rate of 64
kbps.

• The allowed baseband packet types are DH1 and DH3, with a maximum payload size
of 27 bytes and 183 bytes, respectively (including 4 bytes L2CAP header).

• The segmentation policy requires that the DH3 baseband packet is used, unless the
remainder of the packet fits in the DH1 baseband packet.

• The channel of each master-slave pair behaves as a two-state DTMC withBERg =
10−5 andBERb = 10−2, whereasρX andBER are varied in the experiments.

• For the variable-interval poller, retransmissions of the GS traffic are performed, de-
pending on the retransmission policy, if the system is idle, in offline-determined slack
time, or in hybrid-checked slack time. For the fixed-interval poller, retransmissions are
performed if the system is idle.

Because of the packet size distribution and the corresponding inter-generation time of pack-
ets, the remaining parameters of the token bucket specification are

rp
i = rt

i = 8 kbytes/s, i ∈ {1, 2, ..., 6}, (5.67)

and

bi ≥ Mi, i ∈ {1, 2, ..., 6}. (5.68)

Because of the packet sizes the source of each GS flowi can use, and because of the allowed
baseband packet types, the minimum poll efficiencyεmin

pi
is achieved by a packet size of 144

bytes, which is sent using one DH3 baseband packet. Hence, theC error term for these flows
is given byCi = εmin

pi
= 144 bytes for each GS flowi. As all the nodes are allowed to

use DH3 baseband packets, the possibility must be taken into account that both the master
and the addressed slave transmit a DH3 packet. Consequently, theD error term is given by
Di = 2 3

1600 = 3.75 ms for each GS flowi.

According to Section 4.2, the GS flows 1 to 6 can be looked at as a set of six periodic or spo-
radic tasks dependent on whether the fixed-interval poller or the variable interval poller is con-

sidered. In both cases, each taski is described by a tuple(pi, ei, di) = (
εmin
pi

Ri
, smax

i , Ci

Ri
+Di).

All the GS flows are described by equal traffic specifications (token bucket specification),
while sharing the same piconet and thus the same maximum possible segment size (smax).
As each GS flow is also requesting the same delay bound, the tuple describing each GS flow
i can be simplified to(144

R , 4
1600 , 144

R + 6
1600). Considering the feasibility analysis of Sec-

tion 4.2.1.1, the GS flows can be admitted as long as

Ũ = 6
4

1600R

144
≤ 1. (5.69)

Consequently, the six GS flows can be admitted as long asR ≤ 9.6 kbytes/s. This implies
that the minimum delay bound that can be requested isďB ≈ 37.1 ms (see (4.1)).

Note that the requested delay bound ofdB = 40 ms corresponds to a requested rate ofR ≈
8.8 kbytes/sec (̃U ≈ 0.92), which is slightly higher than the data rate. Consequently, the
majority of planned polls will be successful, making it possible for the variable-interval poller
to save bandwidth, which can be used for retransmissions.

5.4. Simulation studies 155

5.4.4.3 Simulation results

Figure 5.30 and Figure 5.31 show, for a burstiness level of respectivelyρX = 0 and
ρX = 0.7, the total residual packet drop ratio as a function of the average bit error ratioBER
in case of a delay requirement ofdB = 40ms.

As can be seen in both figures, the variable-interval poller is able to translate its created
extra idle time into a considerably lower residual packet drop ratio. Furthermore, the offline-
determined slack is insufficient for performing a retransmission in. Consequently, the same
residual packet drop ratio is achieved in case retransmission are performed in idle time and
in case retransmissions are performed in offline-determined slack.

In case of the variable-interval poller with the hybrid-checked slack usage policy, an even
lower residual packet drop ratio is achieved. The reason for this is that with the hybrid-
checked slack usage policy the actually available slack is also checked rather than only the
offline-determined slack.

Note than in case of bursty packet errors, the residual packet drop ratio increases for all the
simulated pollers. This increase is more significant in case of the hybrid-checked slack us-
age policy. The reason behind this is that, in case of the hybrid-checked slack usage policy,
retransmissions are performed as soon as possible. However, because of the high burstiness
level, the retransmissions often experience the same channel conditions as the original trans-
mission.

5.4.4.4 Conclusions of scenario III

From the simulation results, it can be concluded that, in case of high utilization and
loose delay requirements, significantly lower residual packet drop ratios can be achieved
by using the variable interval poller instead of the fixed-interval poller. Moreover, the use
of the variable-interval poller with the hybrid-checked slack usage policy further decreases
the residual packet drop ratio. Compared with the variable-interval poller with the offline-
determined slack usage policy, a more than ten times lower residual packet drop ratio can be
achieved by the variable-interval poller with the hybrid-checked slack usage policy.

156 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

10
−5

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

(fixed interval poller) idle time usage
(variable interval poller) idle time usage
(variable interval poller) offline−determined slack usage
(variable interval poller) hybrid−checked slack usage
without retransmissions

Figure 5.30: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 40 ms in case of independent packet errors (ρX = 0).

10
−5

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

BER

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

(fixed interval poller) idle time usage
(variable interval poller) idle time usage
(variable interval poller) offline−determined slack usage
(variable interval poller) hybrid−checked slack usage
without retransmissions

Figure 5.31: Residual packet drop ratio as a function of average bit error ratio (BER) for a delay
requirement of 40 ms in case of highly dependent packet errors (ρX = 0.7).

5.4. Simulation studies 157

5.4.5 Scenario IV: Comparison with an SCO channel

5.4.5.1 Purpose of the simulation

In an ACL channel, baseband packets that are not correctly received can be retransmitted.
In an SCO channel, no retransmissions take place. However, the possibility exists for using
the HV2 baseband packet type, which protects the payload with a rate 2/3 FEC, or the HV1
baseband packet type, which protects the payload with a rate 1/3 FEC.

The purpose of this simulation scenario is to compare the achieved total residual packet drop
ratio in case of an SCO channel with the achieved total residual packet drop ratio in case
of a variable-interval poller with the hybrid-checked slack usage policy. Recall that in the
previous scenario, the lowest residual packet drop ratio is achieved using the hybrid-checked
slack usage policy.

5.4.5.2 Description of the simulation scenario

In this scenario, simulations are performed using the simulation setup of Section 4.3.3.2
(see also Figure 4.8). In addition to the assumptions of Section 4.3.3.2, the following as-
sumptions are also made:

• The channel of each master-slave pair behaves as a two-state DTMC withBERg =
10−5 andBERb = 10−2, whereasρX = 0.5 andBER = 10−3 in the experiments.

• In case of an ACL channel, which the variable-interval poller is used in, retransmis-
sions of the GS traffic are performed in hybrid-checked slack time. In case of an SCO
channel, no retransmissions are performed.

• In case of an ACL channel, simulations are performed for each of the packet type
groups DH and DM. In case of an SCO channel, simulations are performed for each of
the packet types HV1, HV2, and HV3.

5.4.5.3 Simulation results

Figure 5.32 and Figure 5.33 show, for a data rate of respectivelyrd = 32kbps and
rd = 64kbps, the total residual packet drop ratio as a function of the total delay requirement
in case of an average bit error ratio ofBER = 10−3 and an error burstiness level ofρX = 0.5.

Except for the case in whichrd = 64kbps and in which an ACL channel with DM pack-
ets is used, the use of the variable-interval poller leads to supported minimum total delay
requirements comparable to those in an SCO channel. Moreover, the use of the DH or DM
packet types in an ACL channel with a variable-interval poller that performs retransmissions
in hybrid-checked slack time leads to a significantly lower residual packet drop ratio com-
pared to the use of, respectively, the HV3 or HV2 in an SCO channel. In fact, the use of
DH or DM packet types in an ACL channel with a variable-interval poller that performs re-
transmissions in hybrid-checked slack time outperforms even the use of the HV1 packet in
an SCO channel. Moreover, by using the HV1 packet in an SCO channel, the data rate of

158 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

rd = 64kbps cannot be afforded in this scenario.

Note that the discontinuity in the residual packet drop ratio graphs of the ACL channel are
caused by the packet size/type selection. Simulations are also performed just before and just
after the point at which the discontinuity occurs. As can be seen, the packet size selection
does not always lead to the lowest possible residual packet drop ratio. The reason for this is
that the packet size selection is based on achieving the lowest possible utilization rather than
achieving the lowest residual packet drop ratio.

In case of a data rate ofrd = 64kbps and loose delay requirements, using the DH packet
type group in the ACL channel leads to a lower residual packet drop ratio than when using
the DM packet type group, which provides forward error correction. The reason for this is
that a lower utilization is achieved when using the DH packet type group, which makes it
possible to perform more retransmissions than in case of the DM packet type group.

5.4.5.4 Conclusions of scenario IV

The use of the variable-interval poller showed to be an outstanding alternative for the
use of an SCO channel for providing delay guarantees in a non-ideal radio environment. The
reason for this is twofold. First, comparably low total delay requirements can be guaranteed
in both cases. Second, using the variable-interval poller leads to a much lower residual packet
drop ratio compared to the use of an SCO channel.

5.4. Simulation studies 159

0 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Total delay requirement (ms)

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

ACL using DM packets (hybrid−checked slack usage)
ACL using DH packets (hybrid−checked slack usage)
SCO HV1
SCO HV2
SCO HV3

Figure 5.32: Residual packet drop ratio as a function of the total delay requirement for a data rate of
rd = 32kbps and an average bit error ratio of BER = 10−3 in case of moderately dependent packet
errors (ρX = 0.5).

0 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Total delay requirement (ms)

R
es

id
ua

l p
ac

ke
t d

ro
p

ra
tio

ACL using DM packets (hybrid−checked slack usage)
ACL using DH packets (hybrid−checked slack usage)
SCO HV2
SCO HV3

Figure 5.33: Residual packet drop ratio as a function of the total delay requirement for a data rate of
rd = 64kbps and an average bit error ratio of BER = 10−3 in case of moderately dependent packet
errors (ρX = 0.5).

160 Chapter 5. QoS in Bluetooth: a non-ideal radio environment

5.5 Discussion

The previous chapter discussed polling mechanisms that are able to provide QoS in an
ideal radio environment, where retransmissions are not needed. This chapter discussed the
same polling mechanisms while releasing the restriction of the ideal radio environment.

A timeout has been defined in which retransmission can be performed without delaying next
packets of the same flow. This timeout also prevents the transmission of packets that would
otherwise be late. An obvious way for the polling mechanism to perform retransmissions is
to background the retransmissions, i.e., to perform retransmissions when there are no pend-
ing QoS polls. However, this may cause the aforementioned timeout to expire and the packet
to be dropped. Slack using policies have been defined to perform retransmissions as soon
as possible rather than waiting until the poller is idle. These policies are summarized in Ta-
ble 5.1. Simulation studies showed that among the online/hybrid-determined/checked slack
usage policies, the hybrid-checked slack usage policy needs the lowest average number of
evaluated time instances per retransmission attempt.

Furthermore, simulation studies showed that the variable-interval poller is able to translate its
created extra idle time into a lower residual packet drop ratio for the QoS flows. This is espe-
cially the case when the utilization is high and the delay requirements are loose. Moreover,
the simulation studies showed that, in that case, the variable-interval poller in combination
with the hybrid-checked slack usage policy leads to a significantly lower residual packet drop
ratio.

Finally, simulations showed that using the variable-interval poller in combination with the
hybrid-checked slack usage policy is an outstanding alternative for using an SCO channel,
both in terms of achieved best effort throughput (see Chapter 4) as well in terms of the residual
packet drop ratio of the GS flows.

Chapter 6

Conclusions and further work

In this dissertation, the design of new Bluetooth intra-piconet scheduling mechanisms has
been addressed. These mechanisms are also referred to as Bluetooth polling mechanisms.
The first goal was to design a polling mechanism that, in case of best effort traffic, divides
bandwidth among the slaves in a Bluetooth piconet in a fair and efficient manner. The second
goal was to design a polling mechanism that is able to provide quality of service. This chapter
gives an overview of the major achievements of this work, and points out directions for further
work.

6.1 Conclusions and results

Bluetooth uses a polling mechanism, which is applied by the master, to divide the band-
width among the remaining participants (the slaves) in a piconet. This polling mechanism,
also referred to as the Bluetooth intra-piconet scheduling mechanism, highly determines the
performance of the traffic flows in a Bluetooth piconet.

In order for the Bluetooth technology to be a successful enabler of personal area networks,
the Bluetooth polling mechanism should be efficient in order to get the most out of the scarce
bandwidth. At the same time, the polling mechanism should be fair, i.e., it should not ignore
lowly loaded slaves. Finally, the polling mechanism must be able to provide quality of ser-
vice, which is needed to support audio and video applications.

In Chapter 3, we discussed the development of a new polling mechanism, named Predictive
Fair Poller, which continuously estimates the fairness and the probability of data being avail-
able for transmission at a slave. Based on these two estimates, it decides which slave to poll
next. In the best effort case, it estimates the fair share of resources for each slave and keeps
track of the fraction of fair share that each slave has been given. Best Effort traffic is polled
in a fair and efficient manner by keeping track of both the fairness based on the fractions of
fair share and the predictions. In the QoS case, QoS requirements are negotiated with the
slaves and translated into fair QoS treatments. The poller keeps track of the fraction of fair
QoS treatment that each slave has been given. Similar to the Best Effort case, the Predictive
Fair Poller can be used to poll QoS traffic such that the QoS requirements are efficiently met
by keeping track of both the fairness based on the fractions of fair QoS treatment and the
predictions.

Analytical results showed that the 1-limited Round Robin poller is not able to poll asymmetri-
cally loaded slaves in a fair and efficient manner. By means of simulations, we compared the
Predictive Fair Poller with the 1-limited Round Robin poller and the Fair Exhaustive Poller.
The simulation results showed that, as opposed to the 1-limited Round Robin poller, the Pre-
dictive Fair Poller is able to poll asymmetrically loaded slaves in a fair and efficient manner.
Moreover, the Predictive Fair Poller outperforms the Fair Exhaustive Poller, especially with
respect to fairness.

162 Chapter 6. Conclusions and further work

The Data Availability Predictor of the initially developed Predictive Fair Poller is complex,
as it needs a large amount of calculations for each prediction. Consequently, and based on
some assumptions on the traffic, we simplified the Data Availability Predictor and came up
with the simplified Predictive Fair Poller, which needs a significantly lower amount of cal-
culations per prediction. Simulation results showed that the simplified Predictive Fair Poller
achieves a performance comparable to that of the initially developed Predictive Fair Poller,
which justifies the simplifications.

In Chapter 4, we discussed the development of two polling mechanisms that are capable
of providing QoS. More specifically, these pollers follow the IETF’s Guaranteed Service
approach, hence providing both a rate guarantee and a delay guarantee. The QoS pollers
of Chapter 4 are the fixed-interval poller, which polls slaves with fixed intervals, and the
variable-interval poller, which postpones polls whenever possible without violating dead-
lines, and consequently polls slaves with variable intervals. The fixed-interval poller and the
variable-interval poller make use of the concept of Guaranteed Service. They provide, with
some predefined maximum deviation, a rate guarantee, which leads to a delay guarantee,
provided that the traffic sources comply to their traffic flow specification. These two types of
guarantees are the main QoS types that are needed for audio and video applications. Although
the fixed-interval poller and the variable-interval poller can be implemented as a Predictive
Fair Poller, they are not required to be so. In other words, they can be executed next to any
other best effort polling mechanism, which is executed in their idle time.

Simulation studies have shown that, while providing QoS, the variable-interval poller con-
sumes less bandwidth than the fixed-interval poller. The saved bandwidth can be used for
retransmissions of the QoS traffic and/or for achieving a higher best effort throughput. The
latter is shown by the simulation results of Chapter 4. A comparison with an SCO channel
showed that the variable-interval poller is able to guarantee delay bounds that approach the
delay bounds that can be guaranteed using an SCO channel. Moreover, the variable-interval
poller is able to do so while consuming less resources. As opposed to an SCO channel, the
variable-interval poller can also perform retransmissions. Using the saved bandwidth, this
property can be exploited to avoid the link quality problems of SCO channels in bad radio
environments, while keeping up QoS.

In Chapter 5, we discussed the same polling mechanisms as in Chapter 4, while releasing
the restriction of an ideal radio environment. We defined a time period in which retrans-
mission can be performed without unacceptably delaying next packets of the same flow. An
obvious strategy of performing retransmission is to background the retransmissions, i.e., to
wait until there are no pending QoS polls. The drawback of this strategy is that busy periods
may be long, causing the aforementioned time period to elapse and the packet that needs a
retransmission to be dropped. We defined five policies that use slack time in order to perform
retransmission as soon as possible rather than to wait until the QoS poller is idle. The first
policy is the offline-determined slack usage policy, which, during admission control, deter-
mines the worst case (minimum) available amount of slack in a busy period. In each busy
period, a total amount of slack, up to this worst case available amount, can be consumed
whenever needed within that busy period.

Busy periods that are not worst case may contain more slack than the offline-determined

6.2. Directions for further research 163

minimum amount of slack. In order to make use of this additional amount of slack, we
defined four policies that determine or check the slack online. These policies are the online-
determined slack usage policy, the online-checked slack usage policy, the hybrid-determined
slack usage policy, and the hybrid-checked slack usage policy. Simulation studies showed
that among these slack usage policies, the hybrid-checked slack usage policy needs the low-
est average number of evaluated time instances per retransmission attempt.

Simulation studies also showed that the variable-interval poller is able to translate its gen-
erated extra idle time into a lower residual packet drop ratio for the QoS flows. This is
especially the case when the utilization is high and the delay requirements are loose. More-
over, the simulation studies showed that, in that case, use of the variable-interval poller in
combination with a hybrid-checked slack usage policy leads to a significantly lower residual
packet drop ratio.

Finally, a comparison with an SCO channel showed that using the variable-interval poller
in combination with the hybrid-checked slack usage policy is an outstanding alternative for
using an SCO channel, both in terms of achieved best effort throughput and in terms of the
residual packet drop ratio of the GS flows.

With the development of the polling mechanisms and techniques presented in this disserta-
tion, the main goal of this work has been met. First, we developed a polling mechanism
that is able to divide bandwidth among the slaves in a piconet in a fair and efficient manner
(best effort case). Second, we developed polling mechanisms that are able to provide QoS.
These polling mechanisms help in making the Bluetooth technology a successful enabler of
personal area networks, and thus of personal networks.

6.2 Directions for further research

This dissertation addressed the development of intra-piconet scheduling mechanisms that
help in making the Bluetooth technology a successful enabler of personal area networks and
personal networks. In order to increase the potential of the Bluetooth technology even fur-
ther, similar research efforts have to be conducted forinter-piconet scheduling. Such efforts
should result in efficient communication between PANs, without using an intermediate (in-
frastructure) network. Furthermore, it should be investigated whether, and how, quality of
service can be supported if QoS traffic traverses a scatternet.

The Predictive Fair Poller discussed in Chapter 3 determines at each poll moment which
slave to poll next. However, some Bluetooth implementations may require batch poll deci-
sions. For instance, they may require that after everyn polls, the nextn polls are determined
at once. It is a topic of further research to investigate how this will affect the performance of
the Predictive Fair Poller. The same investigations must also be done for the variable-interval
poller, which generates extra idle time by postponing polls, sometimes just before they would
have been executed.

In Chapter 4, we designed QoS support for Bluetooth by making use of the concept behind
the IETF’s Guaranteed Service. We focused on the scheduling, the determination of theC
andD error terms, and on the admission control. Investigating how the various specifica-

164 Chapter 6. Conclusions and further work

tions (flow specification, request specification,C andD error terms, etc.) that are used by the
Guaranteed Service should be exchanged between the GS sender, the intermediate nodes, and
the GS receiver remains a topic for further research. For instance, it should be investigated
whether RSVP is suitable for use over Bluetooth, and how the L2CAP quality of service op-
tion can be exploited for exchanging parts of the aforementioned specifications.

Bluetooth supports various low power modes, in which the power consumption of the Blue-
tooth nodes can be reduced at the cost of, for instance, a lower poll frequency. It should be
investigated whether and how the developed polling mechanisms can cooperate with these
low power modes, while keeping up fairness, efficiency, and quality of service.

For the design of Guaranteed Service support in Bluetooth, we have assumed that no inquiry
or paging procedures take place. This means that no new connections can be set up while
providing QoS. It is a topic for further research to investigate how inquiry and paging proce-
dures can be performed while keeping up QoS.

In order to cope with a non-ideal radio environment, we defined a flush timeout that is cal-
culated for each L2CAP packet, and various retransmission policies that try to perform re-
transmission as soon as possible. The current Bluetooth specification defines a flush timeout
per ACL connection rather than per L2CAP packet. Finding out how a fixed flush timeout
per ACL connection affects the designed retransmission policies remains a topic for further
research.

In the recently released specification of the Bluetooth system (version 1.2) [BT003], an ex-
tended synchronous connection-oriented (eSCO) link has been introduced. The eSCO link
offers a number extensions over SCO links. eSCO links support a more flexible combination
of packet types, selectable data contents, and selectable slot periods. Moreover, eSCO links
can offer limited retransmission of packets. These properties make eSCO more suitable than
SCO for providing QoS. It is a topic for further research to compare the polling mechanisms
and techniques developed in Chapter 4 and Chapter 5 with the recently introduced eSCO link.

By using the Bluetooth technology as an enabler for personal networks, the Bluetooth per-
sonal area network will interface to various communications technologies such as the Inter-
net, UMTS, and WLAN. Research should be conducted on the interoperability of the QoS
supported in each of the potential communication technologies that a Bluetooth PAN will
interface to in order to provide end-to-end QoS.

In this work, we focused on scheduling, which is crucial for making the Bluetooth technology
a successful enabler of personal area networks. However, there are other crucial PAN-related
research issues [NHdG03] such as power consumption, security, context discovery, and co-
operation with fixed infrastructures. The success of the Bluetooth technology as an enabler
for personal area networks also requires research to be conducted on these issues.

Bibliography

[Alm92] P. Almquist. Type of Service in the Internet Protocol Suite. RFC 1349, IETF,
July 1992.

[AYH01a] R. Ait Yaiz and G. Heijenk. Polling Best Effort Traffic in Bluetooth. InPro-
ceedings of the Fourth International Symposium on Wireless Personal Commu-
nications WPMC01, pages 1381–1386, Aalborg, Denmark, September 2001.

[AYH01b] R. Ait Yaiz and G. Heijenk. Polling in Bluetooth, a Simplified Best Effort Case.
In Proceedings of the 7th annual CTIT Workshop, pages 91–96, Enschede, the
Netherlands, February 2001. Twente University Press.

[AYH02] R. Ait Yaiz and G. Heijenk. Polling Best Effort Traffic in Bluetooth.Wireless
Personal Communications, 23(1):195–206, October 2002.

[AYH03] R. Ait Yaiz and G. Heijenk. Providing Delay Guarantees in Bluetooth. InPro-
ceedings of 23rd International Conference on Distributed Computing Systems
Workshops ICDCSW’03, pages 722–727, Providence, Rhode Island, May 2003.
IEEE Computer Society Press.

[AYH04] R. Ait Yaiz and G. Heijenk. Providing QoS in Bluetooth.Cluster Computing,
2004. Submitted for publication.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Archi-
tecture for Differentiated Services. RFC 2475, IETF, December 1998.

[BCG01] R. Bruno, M. Conti, and E. Gregori. Wireless Access to Internet via Bluetooth:
Performance Evaluation of the EDC Scheduling Algorithm. InProceedings of
the First Workshop on Wireless Mobile Internet, pages 43–49, Rome, Italy, July
2001. ACM Press.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Archi-
tecture: an Overview. RFC 1633, IETF, June 1994.

[BFY+00] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,
B. Davie, J. Wroclawski, and E. Felstaine. A Framework for Integrated Ser-
vices Operation over Diffserv Networks. RFC 2998, IETF, November 2000.

[BLW91] O.J. Boxma, H. Levy, and J.A. Weststrate. Efficient visit frequencies for polling
tables: minimization of waiting cost.Queueing Systems, 9:133–162, 1991.

[BM00] H. G. P. Bosch and S. J. Mullender. Real-Time Disk Scheduling in a Mixed-
Media File System. Technical Report INS-R0006, CWI, Center for Mathemat-
ics and Computer Science, February 2000.

[BMR90] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively Scheduling Hard Real-
Time Sporadic Tasks on One Processor. InProceedings of the 11th Real-Time
Systems Symposium, pages 182–190, 1990.

166 Bibliography

[Box91] O.J. Boxma. Analysis and optimization of polling systems. InQueueing,
Performance and Control in ATM (1TC-13), pages 173–183, Amsterdam, The
Netherlands, 1991. Elsevier Science Publishers B.V. (North-Holland).

[BR87] J.E. Baker and I. Rubin. Polling with a general-service order table.IEEE
Transactions on Communications, 35(3):283–288, March 1987.

[BT001] Specification of the Bluetooth System; The Bluetooth Consortium, version 1.1.
http://www.bluetooth.org, Februari 2001.

[BT003] Specification of the Bluetooth System; The Bluetooth Consortium, version 1.2.
http://www.bluetooth.org, November 2003.

[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVa-
tion Protocol (RSVP) – Version 1 Functional Specification. RFC 2205, IETF,
September 1997.

[CGK01] A. Capone, M. Gerla, and R. Kapoor. Efficient Polling Schemes for Bluetooth
picocells. InProceedings of the IEEE International Conference on Communi-
cations 2001, Helsinki, Finland, June 2001. IEEE Computer Society Press.

[CH02] W. Chen and J.C. Hou. Provisioning of Temporal QoS in Bluetooth Networks.
In Proceedings of the 4th IEEE confenrence on Mobile and Wireles Communi-
cations Networks MWCN02, Stockholm, Sweden, September 2002.

[CKK+01] I. Chakraborty, A. Kashyap, A. Kumar, A. Rastogi, H. Saran, and R. Shorey.
MAC Scheduling Policies with Reduced Power Consumption and Bounded
Packet Delays for Centrally Controlled TDD Wireless Networks. InPro-
ceedings of the IEEE International Conference on Communications ICC2001,
Helsinki, Finland, June 2001. IEEE.

[CKR+00] I. Chakraborty, A. Kashyap, A. Rastogi, H. Saran, R. Shorey, and A. Ku-
mar. Policies for Increasing Throughput and Decreasing Power Consumption
in Bluetooth MAC. InProceedings of the IEEE International Conference on
Personal Wireless Communications 2000, pages 90–94, Hyderabad, India, De-
cember 2000.

[CMU99] The CMU Monarch Project’s Wireless and Mobility Extentions to ns.
http://www.monarch.cs.cmu.edu/, August 1999. The CMU Monarch Project,
Snapshot Release 1.1.1.

[CSS01] S. Chawla, H. Saran, and M. Singh. QoS Based Scheduling for Incorporating
Variable Rate Coded Voice in Bluetooth. InProceedings of the IEEE Interna-
tional Conference on Communications ICC2001, Helsinki, Finland, June 2001.

[DCB+02] B. Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y. Le Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-Hop
Behavior). RFC 3246, IETF, March 2002.

[DGR+01] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey. Enhancing Performance
of Asynchronous Data Traffic over the Bluetooth Wireless Ad-hoc Network. In
Proceedings of IEEE Infocom, volume 1, pages 591–600, Anchorage, Alaska,
April 2001. IEEE.

Bibliography 167

[EKW99] R. Epsilon, J. Ke, and C. Williamson. Analysis of ISP IP/ATM Network Traffic
Measurements.Performance Evaluation Review, 27(2):15–24, 1999.

[GB95] T.M. Ghazalie and T.P. Baker. Aperiodic Servers in a Deadline Scheduling
Environment.Journal of Real-Time Systems, 9(1):31–67, July 1995.

[GGPR96] L. Georgiadis, R. Gúerin, V. Peris, and R. Rajan. Efficient Support of Delay
and Rate Guarantees in an Internet. InProceedings of the ACM SIGCOMM’96,
pages 106–116, Stanford, California, August 1996.

[GMR95] L. George, P. Muhlethaler, and N. Rivierre. Optimality and Non-Preemptive
Real-Time Scheduling Revisited. Technical Report 2516, Institut National de
Researche en Informatique et Automatique, April 1995.

[GRS96] L. George, N. Rivierre, and M. Spuri. Preemptive and Non-Preemptive Real-
Time Uniprocessor Scheduling. Technical Report 2966, Institut National de
Researche en Informatique et Automatique, September 1996.

[Haa98] J. C. Haartsen. Bluetooth - the universal radio interface for ad-hoc, wireless
connectivity.Ericsson Review, 3:110–117, 1998.

[Haa00] J. C. Haartsen. The Bluetooth Radio System.IEEE Personal Communications
Magazine, 7(1):28–36, February 2000.

[HAY01] G. Heijenk and R. Ait Yaiz. Predictive Fair Polling in a Wireless Access
Scheme, Application for United States Patent, No. USPTO 09/954,780, 2001.
Filed September 17, 2001.

[HBWW99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. RFC 2597, IETF, June 1999.

[HV95] R.R. Howell and M.K. Venkatrao. On Non-Preemptive Scheduling of Recur-
ring Tasks Using Inserted Idle Time.Information and Computation Journal,
117(1):50–62, February 1995.

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. John Wiley &
Sons, New York, NY, April 1991.

[JCH84] R. K. Jain, D. W. Chiu, and W. R. Hawe. A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared computer systems. Tech-
nical Report DEC-TR-301, Digital Equipment Corporation, September 1984.

[JHM02] P.G. Jansen, F.T.Y. Hanssen, and S.J. Mullender. ClockWork: a Real-Time Fea-
sibility Analysis Tool. Technical Report TR-CTIT-02-12, Center for Telematics
and Information Technology, University of Twente, June 2002.

[JKJ99] N. J. Johansson, U. K̈orner, and P. Johansson. Performance Evaluation of
Scheduling Algorithms for Bluetooth. InProceedings of IFIP TC6 Fifth In-
ternational Conference on Broadband Communications ’99, pages 139–150,
Hong-Kong, November 1999. Kluwer.

[JKKG01] P. Johansson, M. Kazantzidis, R. Kapoor, and M. Gerla. Bluetooth: an enabler
for personal area networking.IEEE Network, 15(5):28–37, Sept-Oct 2001.

168 Bibliography

[JL99] P.G. Jansen and R. Laan. The Stack Resource Protocol Based on Real-Time
Transactions.IEE Proceedings-Software, 146(2):112–119, April 1999.

[JSM91] K. Jeffay, D.F. Stanat, and C.U. Martel. On Non-Preemptive Scheduling of Pe-
riodic and Sporadic Tasks. InProceedings of the Twelfth IEEE Real-Time Sys-
tems Symposium, pages 129–139, San Antonio, December 1991. IEEE Com-
puter Society Press.

[KBS99] M. Kalia, D. Bansal, and R. Shorey. MAC Scheduling and SAR policies for
Bluetooth: A Master Driven TDD Pico-Cellular Wireless System. InProceed-
ings of the Sixth International Workshop on Mobile Multimedia Communica-
tions, pages 384–388, San Diego, California, November 1999.

[KBS00] M. Kalia, D. Bansal, and R. Shorey. Data Scheduling and SAR for Bluetooth
MAC. In Proceedings of IEEE Vehicular Technology Conference (VTC), Tokyo,
Japan, May 2000.

[KN80] K.H. Kim and M. Naghibdadeh. Prevention of Task Overruns in Real-Time
Non-Preemptive Multiprogramming Systems. InProceedings of Performance,
pages 267–276. ACM Press, March 1980.

[Kue79] P.J. Kuehn. Multiqueue Systems with Nonexhaustive Cyclic Service.The Bell
System Technical Journal, 58(3):671–698, March 1979.

[LL73] C.L. Lui and W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment.Journal of the Association for Computing Ma-
chinery, 20(1), January 1973.

[LRT92] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for Scheduling Soft
Aperiodic Tasks in Fixed-Priority Preemptive Systems. InProceedings of the
13th IEEE Real-Time Systems Symposium, pages 110–123, Phoenix, Arizona,
December 1992. IEEE Computer Society Press.

[LSS87] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced Aperiodic Respon-
siveness in Hard Real-Time Environments. InProceedings of the 8th IEEE
Real-Time Systems Symposium, pages 261–270, San Jose, California, Decem-
ber 1987. IEEE Computer Society Press.

[LT02] J. Lapeyrie and T. Turletti. Adding QoS Support for Bluetooth Piconet. Tech-
nical Report 4514, Institut National de Researche en Informatique et Automa-
tique, July 2002.

[MKM04] V.B. Mi šić, E.W.S. Ko, and J. Mišić. Load and QoS-Adaptive Scheduling in
Bluetooth Piconets. InProceedings of the 37th Hawaii International Confer-
ence on System Sciences HICSS04, Big Island, Hawaii, January 2004.

[MMG03] A. Mercier, P. Minet, and L. George. Introducing QoS support in Bluetooth
Piconet with a Class-Based EDF Scheduling. Technical Report 5054, Institut
National de Researche en Informatique et Automatique, December 2003.

[MR99] D.C. Montgomery and G.C. Runger.Applied Statistics and Probability for En-
gineers. John Wiley & Sons, second edition, 1999.

Bibliography 169

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474, IETF,
December 1998.

[NHdG02] I.G. Niemegeers and S.M. Heemstra de Groot. From Personal Area Networks
to Personal Networks: a User Oriented Approach.Wireless Personal Commu-
nications, 22(2):175–186, August 2002.

[NHdG03] I.G. Niemegeers and S.M. Heemstra de Groot. Research Issues in Ad-Hoc Dis-
tributed Personal Networking.Wireless Personal Communications, 26(2):149–
167, 2003.

[Nie00] J. Nielsen. IP Routing Performance in Bluetooth Scatternets: a Simulation
Study. Master’s thesis, Department of Computer Systems (DoCS), Uppsala
University, Uppsala, 2000.

[ns2] The Network Simulator (ns2). Software and documentation available from
http://www.isi.edu/nsnam/ns.

[Par92] C. Partridge. A Proposed Flow Specification. RFC 1363, IETF, September
1992.

[Par93] C. Partridge.Gigabit Networking. Addison-Wesley, second edition, December
1993.

[PH03] M. Perillo and W.B. Heinzelman. ASP: An Adaptive Energy-Efficient Polling
Algorithm for Bluetooth Piconets. InProceedings of the 36th Hawaii Interna-
tional Conference on System Sciences HICSS03, Big Island, Hawaii, January
2003.

[RBK01] R. Rao, O. Baux, and G. Kesidis. Demand-based Bluetooth Schedul-
ing. In Web-Based Proceedings of the Third IEEE Workshop on
Wireless Local Area Networks, Boston, Massachusetts, September 2001.
http://www.wlan01.wpi.edu/proceedings/index2.html.

[RJC87] K. K. Ramakrishnan, R. K. Jain, and D. W. Chiu. Congestion Avoidance in
Computer Networks with a Connectionless Network Layer, Part IV: a Selec-
tive Feedback Scheme for General Topologies. Technical Report DEC-TR-510,
Digital Equipment Corporation, August 1987.

[Ros96] S. Ross. Stochastic Processes. John Wiley & Sons, New York, NY, second
edition, 1996.

[Rui01] J.A.L.J. Ruijs. Piconet scheduling. Master’s thesis, Faculty of Electrical Engi-
neering, University of Twente, Enschede, 2001.

[SB94] M. Spuri and G. Buttazzo. Efficient Aperiodic Service under Earliest Dead-
line Scheduling. InProceedings of the 15th IEEE Real-Time Systems Sympo-
sium, pages 2–11, San Juan, Portorico, December 1994. IEEE Computer Soci-
ety Press.

[SB96] M. Spuri and G. Buttazzo. Scheduling Aperiodic tasks in Dynamic Priority
Systems.Journal of Real-Time Systems, 10(2):179–210, March 1996.

170 Bibliography

[Spu96] M. Spuri. Analysis of Deadline Scheduled Real-Time Systems. Technical Re-
port 2772, Institut National de Researche en Informatique et Automatique, Jan-
uary 1996.

[SSG97] C. Partridge S. Shenker and R. Guerin. Specification of Guaranteed Quality of
Service. RFC 2212, IETF, September 1997.

[SSL89] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for Hard
Real-Time Systems.Journal of Real-Time Systems, 1(1):27–60, June 1989.

[SV96] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit Round-
Robin. IEEE Transactions on Networking, 4(3):375–385, 1996.

[Tak86] H. Takagi. Analysis of Polling Systems.The MIT Press Cambridge, Mas-
sachusettes, London, England, 1986.

[Whi83] W. Whitt. The Queueing Network Analyzer.The Bell System Technical Journal,
62(9), November 1983.

[Wro97] J. Wroclawski. Specification of the Controlled-Load Network Element Service.
RFC 2211, IETF, September 1997.

[XN99] X. Xiao and L.M. Ni. Internet QoS: A Big Picture.IEEE Network, 13(2):8–18,
March/April 1999.

[YG99] R.D. Yates and D.J. Goodman.Probability and Stochastic Processes: a
Friendly Introduction for Electrical and Computer Engineers. John Wiley &
Sons, New York, NY, 1999.

[ZCKD02] H. Zhu, G. Cao, G. Kesidis, and C. Das. An Adaptive Power-Conserving Ser-
vice Discipline for Bluetooth. InProceedings of IEEE International Conference
on Communications ICC2002, pages 303–307, New York, April 2002.

[Zha91] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet Switch-
ing Networks. ACM Transactions on Computer Systems, 9(2):101–124, May
1991.

[ZS94] Q. Zheng and K.G. Shin. On the Ability of Establishing Real-Time Channels
in Point-to-Point Packet-Switched Networks.IEEE Transactions on Communi-
cations, 42(2/3/4):1096–1105, 1994.

Acronyms

ACL - Asynchronous connection-less

ACLS - Adaptive cycle-limited scheduling

ADS - Asynchronous dedicated slave

AF - Assured forwarding

AFP - Adaptive flow-based polling

AM ADDR - Active member address

APCB - Adaptive power-conserving service discipline for Bluetooth

APPI - Adaptive probability-based polling interval

APS - Adaptive share polling

ARQ - Automatic repeat request

BD ADDR - Bluetooth device address

BE - Best effort

BER - Bit error ratio

BSD - Berkeley software distribution

CAC - Channel access code

CB-EDF - Class-based EDF

CBR - Constant bit rate

CID - Channel ID

CL - Controlled load

CRC - Cyclic redundancy check

DAC - Device access code

DIAC - Dedicated inquiry access code

DRR - Deficit Round Robin

DS - Differentiated services

DTMC - Discrete-time Markov chain

EDC - Efficient double cycle

172 Acronyms

EDD - Earliest due deadline

EDF - Earliest deadline first

EDL - Earliest deadline late

EF - Expedited forwarding

EPM - Exhaustive pseudo-cyclic master queue length

eSCO - Extended synchronous connection-oriented

FEC - Forward error correction

FEP - Fair exhaustive poller

FPQ - Fair and efficient polling algorithm with QoS support

FTP - File transfer protocol

GFSK - Gaussian frequency shift keying

GIAC - General inquiry access code

GS - Guaranteed service

HEC - Header error check

HOL - Head-of-line

HOL-KFP - HOL K-fairness policy

IAC - Inquiry access code

ID - Identity

IETF - Internet engineering task force

IP - Internet protocol

IrDA - Infrared data association

ISM - Industrial scientific medical

ISP - Intenet service provider

L2CAP - Logical link control and adaptation protocol

LAP - Lower address part

LIBT - Last inter-burst time

LM - Link manager

LMP - Link manager protocol

LWRR - Limited and Weighted Round Robin

MAC - Media access control

Acronyms 173

MTU - Maximum transfer unit

ns2 - Network simulator

PAN - Personal area network

PDA - Personal digital assistant

PFP - Predictive fair poller

PHB - Per-hop behavior

PN - Personal network

PSM - Protocol/service multiplexer

QoS - Quality of service

QSPI - Queue status based polling interval

RF - Radio frequency

RR - Round robin

RSVP - Resource reservation protocol

SAR - Segmentation and reassembly

SCO - Synchronous connection-oriented

SDP - Service discovery protocol

SLA - Service level agreement

TCP - Transmission control protocol

TCS - Transmission convergence sublayer

TOS - Type of service

UMTS - Universal mobile telecommunications system

WLAN - Wireless local area network

Index

A
accesspoint, 6, 75
ACL packet, 11–12
adaptive power-conserving service disci-

pline for Bluetooth (APCB), 87
admission control, 88–91, 100–101
asynchronous connection-less (ACL), 8
audio, 3, 16, 31, 85, 86

B
baseband, 7–14
baseband packet, 8–13
best effort, 16
bit error model, 132–136
Bluetooth device address, 8

C
clock, 8, 11
codec

audio, 102
sample-based, 107

coefficient of variation, 26, 43
connection state, 14
cycle time, 28, 44

D
data availability predictor, 32, 35, 40
decision maker, 33, 41
differentiated services, 5, 19–20

E
efficiency, 4, 22
error term

C, 18, 98
D, 18, 98

exponential moving average, 39–41
extended synchronous connection-oriented

(eSCO), 164

F
fair share determinator, 32, 40–41
fairness, 4, 23–26
fairness index, 23, 24, 26

fluid model, 16, 85
flush timeout, 13, 113–115
fraction of fair share, 23–25
fraction of fair share determinator, 32, 41
frequency hopping, 8, 132

G
guaranteed service, 16–19

I
inactivity metric, 28
individual processor demand

upper bound on, 92, 93
individual processor utilization, 92, 93
inquiry, 11, 14
inquiry scan state, 14
inquiry state, 14
integrated services, 5, 16–19
inter-poll time, 28
intra-piconet scheduling, 1, 2

L
L2CAP, 7, 15–16
L2CAP packet, 13, 15
link manager, 7, 14–15

M
markov chain analysis, 35–39
mode

active, 14, 30
hold, 7, 14, 31
low power, 7, 14, 164
park, 7, 14
sniff, 7, 14, 30

multi-hop connection, 86
multi-hop GS flow, 98
multi-slot packet, 12

P
page scan state, 14
page state, 14
paging, 10, 11, 14
parking, 30

176 Index

personal area network, 1
personal network, 1
piconet, 2, 5
poll interval, 14
poll period, 89, 91
poll urgency, 41
poller

n-limited round robin, 27
1-limited round robin, 3, 27

efficiency of, 47–50
fairness of, 50–53
stability of, 44–47

adaptive flow-based, 29
adaptive share, 31
deficit round robin, 27
exhaustive round robin, 27
fair exhaustive, 28
limited and weighted round robin, 27
predictive fair, 21, 31–42
sniff-based, 30–31
sticky, 29
sticky adaptive flow-base, 29

polling, 2, 8
fixed-interval, 89–98
variable-interval, 98–99

processor demand, 90
processor utilization, 90

Q
quality of service (QoS), 3, 88–101

R
radio frequency (RF), 7–8
reference waiting time, 25–26
relative deadline, 89, 91–98
residual packet drop ratio, 132
RSVP, 19, 86

S
scatternet, 2, 5
scheduling

inter-piconet, 27
intra-piconet, 1, 2, 26

scheduling algorithm
adaptive cycle limited, 28
class-based EDF (CB-EDF), 88
demand-based Bluetooth, 30
efficient double cycle, 29
HOL K-fairness, 29

HOL priority, 28
SCO link, 7
SCO packet, 8, 12
segmentation and reassembly (SAR), 7, 15
slack, 115

checking window, 129
determination procedure, 117–120
determination window, 119

worst case, 120
tank, 121

slack usage
hybrid-checked, 116, 130–131
hybrid-determined, 116, 131
offline-determined, 116, 120–123
online-checked, 116, 128–130
online-determined, 116, 125–127

slave status tracker, 32
stability boundary, 45
standby state, 14
streaming, 16
synchronous connection-oriented (SCO),

3, 8

T
time slot, 8, 14, 21
time-division, 2, 5
time-slotted, 21
token bucket, 16
traffic specification, 16, 18, 19

V
video, 4, 16, 31, 85, 86

Samenvatting

De trend om de persoonlijke apparatuur die mensen met zich mee dragen dynamisch met
elkaar te verbinden heeft geleid tot de introductie van persoonlijke omgevingsnetwerken en
persoonlijke netwerken. Men gaat ervan uit dat de Bluetooth draadloze toegangstechnolo-
gie zal kunnen worden gebruikt om dit soort netwerken op te zetten. In dit proefschrift ligt
de nadruk op Bluetooth intra-piconet scheduling (ook bekend als Bluetooth polling) die het
mogelijk maakt om de Bluetooth technologie succesvol te gebruiken voor het opzetten van
de hiervoor genoemde netwerken.

Om dit te verwezenlijken, moet het Bluetooth polling mechanisme efficiënt zijn. Tegelijker-
tijd, moet het polling mechanisme ook eerlijk zijn. En als laatste, moet het polling mecha-
nisme in staat zijn om ”quality of service” (QoS) te bieden. Dit laatste is nodig voor de
ondersteuning van audio en video applicaties. Conventionele polling mechanismen zijn min-
der geschikt voor Bluetooth daar zij de Bluetooth specificatie niet in acht nemen. Huidige
Bluetooth polling mechanismen zijn niet in staat om op een eerlijke en efficiënte manier te
pollen of zij bieden de nodige QoS niet.

In dit proefschrift wordt een nieuw polling mechanisme, genaamd ”Predictive Fair Poller”
(PFP), ontwikkeld. Dit polling mechanisme voorspelt de beschikbaarheid van data voor elke
slave en houdt de eerlijkheid bij. Gebaseerd op deze twee aspecten bepaalt PFP welke slave
gepold moet worden zodanig dat efficiëntie en eerlijkheid worden geoptimaliseerd.

Verder worden twee nieuwe polling mechanismen ontwikkeld die in staat zijn om QoS te
bieden, namelijk de vaste interval poller en de variabele interval poller. Deze pollers volgen
de Guaranteed Service aanpak van de IETF en bieden dus zowel een rate garantie als een
delay garantie. Voor Bluetooth polling is deze aanpak nieuw. De vaste interval poller plant
polls voor slaves met een vast interval, terwijl de variabele interval poller, wanneer mogelijk,
polls voor slaves uitstelt om bandbreedte te besparen. De vaste interval poller en de variabele
interval poller bieden, met een vooraf gedefinieerde maximale afwijking, een rate garantie.
Gegeven dat de verkeersbronnen zich houden aan hun verkeersspecificatie, leidt deze rate
garantie tot een delay garantie. Deze twee typen garanties zijn de belangrijkste QoS typen
die nodig zijn voor audio en video applicaties. Verder worden hertransmissie strategieën
ontwikkeld die de invloed van slechte radio omgevingen op het bieden van deze QoS typen
minimaliseren.

De mechanismen en technieken die gedurende dit onderzoek zijn ontwikkeld worden geëva-
lueerd middels simulatiestudies. Deze studies tonen aan dat PFP eerlijk en efficiënt is. In het
bijzonder tonen deze studies aan dat PFP minstens zo goed presteert als bestaande Bluetooth
polling mechanismen. Verder tonen deze studies aan dat de variabele interval poller beter
presteert dan de vaste interval poller en dat deze in staat is delay garanties te bieden vergelijk-
baar met de delay garanties die door een zogenaamde ”synchronous connection-oriented”
(SCO) kanaal kunnen worden geboden. Bovendien is de variabele interval poller in staat
deze garanties te bieden en tegelijkertijd minder capaciteit te consumeren. Aangezien de
variabele interval poller in staat is hertransmissies uit te voeren, kan de bespaarde capaciteit
worden gebruikt om, met behoud van QoS, de link kwaliteit problemen van SCO kanalen te
vermijden.

